Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (6): 777-788. doi: 10.13208/j.electrochem.200507
• Articles • Previous Articles Next Articles
WANG Cun1#, ZHANG Wei-jiang1,5#, HE Teng-fei1#, LEI Bo2, SHI You-jie2, ZHENG Yao-dong3, LUO Wei-lin4, JIANG Fang-ming1,*()
Received:
2020-05-07
Revised:
2020-06-12
Online:
2020-12-28
Published:
2020-06-15
Contact:
JIANG Fang-ming
E-mail:jiangfm@ms.giec.ac.cn
CLC Number:
WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling[J]. Journal of Electrochemistry, 2020, 26(6): 777-788.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.200507
Fig. 5
Surface discharge temperature-time curves of the batteries before (0th) and after every 100-cycle in different SOC ranges (A-D). The discharging temperature rate-time curves of four batteries (E), and discharge time and elevated temperature of four batteries before (0th) and after 400 cycles in different SOC ranges (F).
[1] |
Goodenough J B, Park K S.The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438 URL pmid: 23294028 |
[2] |
Armand M, Tarascon J M.Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
doi: 10.1038/451652a URL pmid: 18256660 |
[3] |
Wang J(王剑), Li T J(李桐进), Qi L(其鲁). Progress in high power lithium-ion secondary battery[J]. Acta Physico-himica Sinica(物理化学学报), 2007, 23(Supp): 75-79.
doi: 10.3866/PKU.WHXB2007Supp16 URL |
[4] |
Tran H Y, Täubert C, Wohlfahrt-Mehrens M.Influence of the technical process parameters on structural, mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes - A review[J]. Progress in Solid State Chemistry, 2014, 42(4): 118-127.
doi: 10.1016/j.progsolidstchem.2014.04.006 URL |
[5] |
Chen C H, Liu J, Stoll M E, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. Journal of Power Sources, 2004, 128(2): 278-285
doi: 10.1016/j.jpowsour.2003.10.009 URL |
[6] | Zhecheva E, Stoyanova R, Alc$\acute{a}$ntara R, et al.Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries[J]. Pure and Applied Chemisty, 2002, 74(10): 1885-1894. |
[7] |
Sasaki T, Nonaka T, Oka H, et al.Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries I. Analysis by electrochemical and spectroscopic examination[J]. Journal of The Electrochemical Society, 2009, 156(4): A289-A293.
doi: 10.1149/1.3076136 URL |
[8] |
Muto S, Sasano Y, Tatsumi K, et al.Capacity-fading mech-anisms of LiNiO2-based lithium-ion batteries II. Diagnostic analysis by electron microscopy and spectroscopy[J]. Journal of The Electrochemical Society, 2009, 156(5): A371-A377.
doi: 10.1149/1.3076137 URL |
[9] |
Kang S H, Yoon W S, Nam K W, et al.Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries[J]. Journal of Materials Science, 2008, 43(14): 4701-4706.
doi: 10.1007/s10853-007-2355-6 URL |
[10] |
Bang H J, Joachin H, Yang H, et al.Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells[J]. Journal of The Electrochemical Society, 2006, 153(4): A731-A737.
doi: 10.1149/1.2171828 URL |
[11] |
Dubarry M, Truchot C, Cugnet M, et al.Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. part I: initial characterizations[J]. Journal of Power Sources, 2011, 196: 10328-10335.
doi: 10.1016/j.jpowsour.2011.08.077 URL |
[12] |
Han X B, Ouyang M G, Lu L G, et al.A comparative study of commercial lithium ion battery bycle life in electrical vehicle: aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54.
doi: 10.1016/j.jpowsour.2013.11.029 URL |
[13] | Han X B, Lu L G, Zheng Y J, et al.A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. |
[14] | Deshpande R, Verbrugge M, Cheng Y, et al.Battery cycle life prediction with coupled chemical degradation and fatigue mechanics[J]. Journal of The Electrochemical Society, 2012, 159(10): A1730-A1738. |
[15] | An S J, Li J L, Daniel C, et al.The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. |
[16] | Keil P, Jossen A.Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking[J]. Journal of The Electrochemical Society, 2017, 164(1): A6066-A6074. |
[17] | Zhu X H, Macía L F, Jaguemont J, Hoog J D, et al.Electrochemical impedance study of commercial LiNi0.80Co0.15-Al0.05O2 electrodes as a function of state of charge and aging[J]. Electrochimica Acta, 2018, 287: 10-20. |
[18] | Dubarry M, Svoboda V, Hwu R, et al.Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(10): A454-A457. |
[19] | Dubarry M, Truchot C, Liaw B Y, et al.Evaluation of commercial lithium-ion cells based on composite positive Eelectrode for plug-in hybrid electric vehicle applications. part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196: 10336-10343. |
[20] | Bloom I, Jansen A N, Abraham D P, et al.Differential voltage analyses of high-power, lithium-ion cells[J]. Journal of Power Sources, 2005, 139: 295-303. |
[21] | Dubarry M, Truchot C, Liaw B Y.Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources, 2012, 219: 204-216. |
[22] | Ma Z Y(马泽宇), Jiang J C(姜久春), Wang Z G(王占国), et al.A research on SOC estimation for LiFePO4 battery with graphite negative electrode based on incremental capacity analysis[J]. Automotive Engineering(汽车工程), 2014, 36(12): 1439-1444. |
[23] | Gao Q, Dai H, Wei X, et al.Impedance modeling and aging research of the lithium-ion batteries using the EIS technique[J]. SAE Technical Paper, 2019, 1: 0596. |
[24] | Itagaki M, Kobari N, Yotsuda S, et al.LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2005, 148: 78-84. |
[25] | Chen C H, Liu J, Amine K.Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries[J]. Journal of Power Sources, 2001, 96: 321-328. |
[26] | Belharouak I.Lithium ion batteries-new developments[M]//Zhuang Q C, Qiu X Y, Xu S D, et al. Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries. Rijeka: IntechOpen, 2012: 189-226. |
[27] | Levi M D, Gamolsky K, Aurbach D, et al.On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes[J]. Electrochimica. Acta, 2000, 45: 1781-1789. |
[28] | Sauer D U, Karden E, Fricke B, et al.Charging performance of automotive batteries-an underestimated factor Influencing lifetime and reliable battery operation[J]. Jour-nal of Power Sources, 2007, 168: 22-30. |
[29] | Ungurean L, Crstoiu G, Micea M V, et al. Battery state of health estimation: a structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2017, 41(2): 151-181. |
[30] | Albertus P, Couts J, Srinivasan V, et al.A combined model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2008, 183: 771-782. |
[31] | Wu W X, Wu W, Wang S F.Thermal management optimization of a prismatic battery with shape-stabilized phase change material[J]. International Journal of Heat and Mass Transfer, 2018, 121: 967-977. |
[32] | Stiaszny B, Ziegler J C, Krauss E E, et al.Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part II: Calendar aging[J]. Journal of Power Sources, 2014, 258: 61-75. |
[33] | Kumai K, Miyashiro H, Kobayashi Y, et al.Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719. |
[34] | Wu W X, Wu W, Qiu X H, et al.Low-temperature reversible capacity loss and aging mechanism in lithium-ion batteries for different discharge profiles[J]. International Journal of Energy Research, 2019, 43(1): 243-253. |
[35] | Dubarry M, Liaw B Y, Chen M S, et al.Identifying battery aging mechanisms in large format Li ion cells[J].Journal of Power Sources, 2011, 196: 3420-3425. |
[36] | Huang B, Li X H, Wang Z X, et al.Synjournal of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8): 13223-13230. |
[37] | Xie H B, Du K, Hu G R, et al.Synjournal of LiNi0.8Co0.15-Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties[J]. Journal of Materials Chemistry A, 2015, 3(40): 20236-20243. |
[38] |
Wu F, Tian J, Su Y F, et al.Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS Applied Materials Interfaces, 2015, 7(14): 7702-7708.
URL pmid: 25811905 |
[39] | Kosova N V, Devyatkina E T, Kaichev V V.Optimization of Ni2+/Ni3+ ratio in layered Li(Ni,Mn,Co)O2 cathodes for better electrochemistry[J]. Journal of Power Sources, 2007, 174: 965-969. |
[40] | Chen M, Zhang Y G, Xing L D, et al.Morphology-conserved transformations of metal-based precursors to hierarchically porous micro-/nanostructures for electrochemical energy conversion and storage[J]. Advance Materials, 2017, 29(48): 1607015-1607042. |
[41] | Vetter J, Nov$\acute{a}$k P, Wagner M R, et al.Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147: 269-281. |
[42] | Xue N(薛楠), Sui B X(孙丙香), Bai K(白恺), et al.Different state of charge range cycle degradation mechanism of composite material lithium-ion batteries based on incremental capacity analysis[J]. Transaction of China Electrotechnical Society(电工技术学报), 2017, 32(13): 145-152. |
[43] | Pastor-Fern$\acute{a}$ndez C, Widanage W D, Chouchelamane, G H, et al.A SoH diagnosis and prognosis method to identify and quantify degradation modes in Li-ion batteries using the IC/DV technique[J]. 6th Hybrid and Electric Vehicles Conference. 2016. |
[1] | Lu-Lu Zhang, Chen-Kun Li, Jun Huang. A Beginners’ Guide to Modelling of Electric Double Layer under Equilibrium, Nonequilibrium and AC Conditions [J]. Journal of Electrochemistry, 2022, 28(2): 2108471-. |
[2] | Xiang Li, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jia Wang, Yang Liu, Yu-Feng Zhao, Juan Wang, Jiu-Jun Zhang. Fundamentals of Electrochemical Impedance Spectroscopy for Macrohomogeneous Porous Electrodes [J]. Journal of Electrochemistry, 2021, 27(5): 467-497. |
[3] | WANG Jia, HUANG Qiu-an, LI Wei-heng, WANG Juan, ZHUANG Quan-chao, ZHANG Jiu-jun. Fundamentals of Distribution of Relaxation Times for Electrochemical Impedance Spectroscopy [J]. Journal of Electrochemistry, 2020, 26(5): 607-627. |
[4] | GUO Jian-wei, WANG Jian-long . The Pilot Application of Electrochemical Impedance Spectroscopy on Dynamic Proton Exchange Membrane Fuel Cell [J]. Journal of Electrochemistry, 2018, 24(6): 687-696. |
[5] | WEI Yi-min. Intrinsic Kinetic Properties of Ternary Material for Lithium Ion Batteries Assessed by Single Particle Microelectrode [J]. Journal of Electrochemistry, 2018, 24(1): 81-88. |
[6] | LIAO Qun ZHANG Shu-feng LENG Wen-hua. Kinetics and Mechanism toward Electrochemical Reductions of Sodium Bromide and Methanol over Iron Electrodes [J]. Journal of Electrochemistry, 2017, 23(6): 645-653. |
[7] | SHI Kun-ming, GUO Jian-wei, WANG Jia. The Study of Dynamical Electrochemical Impedance Spectroscopy for Oxygen Reduction Reaction on Pt/C Catalyst [J]. Journal of Electrochemistry, 2016, 22(5): 542-548. |
[8] | LI Yang, HUANG Bo*, YUAN Meng, ZHANG Zhi-qiu, LIU Zong-yao, TANG Xu-chen, ZHU Xin-jian. Fabrication and Impedance Performance of Gradient LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2 Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2014, 20(1): 45-50. |
[9] | LENG Wen-hua*, ZHU Hong-qiao. An Investigation of Photocatalytic Degradation Reactions of Pollutants by Combination of (Photo)electrochemical Measurements [J]. Journal of Electrochemistry, 2013, 19(5): 437-443. |
[10] | REN Rui-Xuan, HUANG Bo, ZHU Xin-Jian, HU Yi-Xing, DING Xiao-Yi, LIU Zong-Yao, LIU Ye-Bin. Fabrication and Performance of LaNi0.6Fe0.4O3-δ Cathode Modified by Coating with Gd0.2Ce0.8O2 for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2013, 19(3): 275-280. |
[11] | CUI Cong-Ying, MA Xue-Mei, KONG De-Long, MA Hou-Yi*. A Comparative Study of Charge-Discharge Behaviors of α-PbO2 and β-PbO2 Cathodes [J]. Journal of Electrochemistry, 2013, 19(1): 43-52. |
[12] | ZHANG Ya-Li, XIN Sen, GUO Yu-Guo, WAN Li-Jun. Comments on Internal Alternating Current Resistance Test Standard and Methods of Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2012, 18(3): 205-214. |
[13] | JIA Bing-li,CAO Fa-he,CHEN An-na,ZHANG Jian-qing. Electrochemical Detection for the Corrosion of Reinforcing Steel in Concrete During Immersion and Drying Cycles [J]. Journal of Electrochemistry, 2010, 16(4): 355-361. |
[14] | LI Yu-nan1,WANG Jia1,2,ZHANG Wei1. Comparative Studies on the Deterioration Process of Organic Coatings under Immersed and Cyclic Wet-Dry Conditions by EIS [J]. Journal of Electrochemistry, 2010, 16(4): 393-400. |
[15] | XUE Lian-jie1,HUANG Ling1 ,KE Fu-sheng1,2,WEI Guo-zhen1,2,ZHENG Xiao-mei1,2, LI Jun-tao1,2,Fan Xiao-yong1,2,SUN Shi-gang1,2 . Preparation and Electrochemical Performance of Three-Dimensional Porous SnCo Alloy Electrode [J]. Journal of Electrochemistry, 2010, 16(2): 161-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||