Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (2): 2108471. doi: 10.13208/j.electrochem.210847
• Special Issue: Frontier of Electrochemistry • Previous Articles Next Articles
Lu-Lu Zhang1, Chen-Kun Li2, Jun Huang3,*()
Received:
2021-10-26
Revised:
2021-12-07
Online:
2022-02-28
Published:
2021-12-18
Contact:
Jun Huang
E-mail:jhuangelectrochem@qq.com
Lu-Lu Zhang, Chen-Kun Li, Jun Huang. A Beginners’ Guide to Modelling of Electric Double Layer under Equilibrium, Nonequilibrium and AC Conditions[J]. Journal of Electrochemistry, 2022, 28(2): 2108471.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.210847
Symbol (unit) | Value | Physical significance | Note |
---|---|---|---|
Constants | |||
kB(J·K-1) | 1.381 × 10-23 | Boltzmann constant | |
T(K) | 298.15 | Absolute temperature | |
h(J·s) | 6.626 × 10-34 | Planck constant | |
e0(C) | 1.602 × 10-19 | Elementary charge | |
NA(mol-1) | 6.022 × 1023 | Avogadro constant | |
$\epsilon_{0}$(F·m-1) | 8.854 × 10-12 | Vacuum permittivity | |
F(C·mol-1) | 96485 | Faraday constant | |
R(J·K-1·mol-1) | 8.314 | Gas constant | |
Solution properties | |||
$\epsilon_{HP}$(F·m-1) | 6$\epsilon_{0}$ | Dielectric permittivity of the space between the electrode and the HP | Ref [56] |
$\epsilon_{S}$(F·m-1) | 78.5$\epsilon_{0}$ | Bulk dielectric permittivity of the water solvent medium | |
δHP(nm) | 0.4125 | Distance from the electrode to the HP, calculated by 1.5 d with the diameter of water d = 0.275 nm. | |
D(m2·s-1) | 1 × 10-9 | Diffusion coefficient | |
cb(mol·m-3) | 1 | Concentration of total cations (anions) in the bulk solution | |
cA0,cB0,cH+0(mol·m-3) | 1 | Concentrations of B, A and H+ under standard conditions | |
Electrode properties | |||
ϕpzc(VSHE) | 0.3 | Potential of zero charge | Estimated |
aM(Å) | 3.5 | Lattice constant of the electrode | Estimated |
nM (m-2) | 4.713 × 1018 | Areal number density of M(111), calculated by ($\sqrt{3}$aM2)-1 | |
Reaction properties | |||
E00(VSHE) | 0.6 | Equilibrium potential of the reaction at standard state | Estimated |
ΔGa00(eV) | 0.4 | Activation energy of the reaction at standard equilibrium state | Estimated |
[1] |
Huang J, Chen S L, Eikerling M. Grand-canonical model of electrochemical double layers from a hybrid density-potential functional[J]. J. Chem. Theory Comput., 2021, 17(4):2417-2430.
doi: 10.1021/acs.jctc.1c00098 URL |
[2] | Trasatti S, Lust E. The potential of zero charge, in Modern aspects of electrochemistry[M]. White R E, Bockris J O’ M, Conway B E, Editors, 1999, Springer US: Boston, MA. 1-215. |
[3] |
Schmickler W, Guidelli R. The partial charge transfer[J]. Electrochim. Acta, 2014, 127:489-505.
doi: 10.1016/j.electacta.2014.02.057 URL |
[4] |
Huang J, Malek A, Zhang J B, Eikerling M. Non-monotonic surface charging behavior of platinum: A paradigm change[J]. J. Phys. Chem. C, 2016, 120(25):13587-13595.
doi: 10.1021/acs.jpcc.6b03930 URL |
[5] |
Huang J, Zhou T, Zhang J B, Eikerling M. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance[J]. J. Chem. Phys., 2018, 148(4):044704.
doi: 10.1063/1.5010999 URL |
[6] |
Helmholtz H V. Studien über electrische grenzschichten[J]. Ann. Phys., 1879, 243(7):337-382.
doi: 10.1002/(ISSN)1521-38889 URL |
[7] |
Chapman D L, Li. A contribution to the theory of electrocapillarity[J]. Philos. Mag., 1913, 25(148):475-481.
doi: 10.1080/14786440408634187 URL |
[8] |
Gouy G. Sur la constitution de la charge electrique a la surface d’un electrolyte.[J]. J. Phys. Theor. Appl., 1910, 9(1):457-468.
doi: 10.1051/jphystap:019100090045700 URL |
[9] | Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Ber. Bunsenges. Phys. Chem., 1924, 30(21-22):508-516. |
[10] | Bikerman J J. Xxxix. Structure and capacity of electrical double layer[J]. Lond. Edinb. Dubl. Phil. Mag., 1942, 33(220):384-397. |
[11] |
Grahame D C. The electrical double layer and the theory of electrocapillarity[J]. Chem. Rev., 1947, 41(3):441-501.
doi: 10.1021/cr60130a002 URL |
[12] |
Lobenz W, Salie G. Potentialabhängigkeit und ladungsübergangskoeffizienten der tl/tl+-reaktion[J]. Z. Phys. Chem., 1961, 29(5):408-412.
doi: 10.1524/zpch.1961.29.5_6.408 URL |
[13] |
Grahame D C. Components of charge and potential in the non-diffuse region of the electrical double layer: Potassium iodide solutions in contact with mercury at 25°1[J]. J. Am. Chem. Soc., 1958, 80(16):4201-4210.
doi: 10.1021/ja01549a022 URL |
[14] |
Mott N F, Watts-Tobin R J. The interface between a metal and an electrolyte[J]. Electrochim. Acta, 1961, 4(2):79-107.
doi: 10.1016/0013-4686(61)80009-1 URL |
[15] |
Mott N F, Parsons R, Watts-Tobin R J. The capacity of a mercury electrode in electrolytic solution[J]. Philos. Mag., 1962, 7(75):483-493.
doi: 10.1080/14786436208212180 URL |
[16] |
Watts-tobin R J. The interface between a metal and an electrolytic solution[J]. Philos. Mag., 1961, 6(61):133-153.
doi: 10.1080/14786436108238358 URL |
[17] |
Schmickler W. Electronic effects in the electric double layer[J]. Chem. Rev., 1996, 96(8):3177-3200.
pmid: 11848857 |
[18] |
Guidelli R, Schmickler W. Recent developments in models for the interface between a metal and an aqueous solution[J]. Electrochim. Acta, 2000. 45(15):2317-2338.
doi: 10.1016/S0013-4686(00)00335-2 URL |
[19] |
Trasatti S. Effect of the nature of the metal on the dielectric properties of polar liquids at the interface with electrodes. A phenomenological approach[J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 123(1):121-139.
doi: 10.1016/S0022-0728(81)80047-2 URL |
[20] |
Badiali J P, Rosinberg M L, Vericat F, Blum L. A microscopic model for the liquid metal-ionic solution interface[J]. J. Electro-Anal. Chem., 1983, 158(2):253-267.
doi: 10.1016/S0022-0728(83)80611-1 URL |
[21] |
Kornyshev A A. Metal electrons in the double layer theory[J]. Electrochim. Acta, 1989, 34(12):1829-1847.
doi: 10.1016/0013-4686(89)85070-4 URL |
[22] |
Schmickler W. A jellium-dipole model for the double layer[J]. J. Electroanal. Chem., 1983, 150(1):19-24.
doi: 10.1016/S0022-0728(83)80185-5 URL |
[23] | Lundqvist S, March N H. Theory of the inhomogeneous electron gas[M]//Physics of solids and liquids, Springer Science & Business Media. XIV, Plenum Press, New York, 1983: 396. |
[24] |
Price D L, Halley J W. Molecular dynamics, density functional theory of the metal-electrolyte interface[J]. J. Chem. Phys., 1995, 102(16):6603-6612.
doi: 10.1063/1.469376 URL |
[25] |
Otani M, ugino O. First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach[J]. Phys. Rev. B, 2006, 73(11):115407.
doi: 10.1103/PhysRevB.73.115407 URL |
[26] |
Petrosyan S A, Briere J F, Roundy D, Arias T A. Joint density-functional theory for electronic structure of solvated systems[J]. Phys. Rev. B, 2007, 75(20):205105.
doi: 10.1103/PhysRevB.75.205105 URL |
[27] |
Letchworth-Weaver K, Arias T A. Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge[J]. Phys. Rev. B, 2012, 86(7):075140.
doi: 10.1103/PhysRevB.86.075140 URL |
[28] |
Sundararaman R, Goddard W A, Arias T A. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry[J]. J. Chem. Phys., 2017, 146(11):114104.
doi: 10.1063/1.4978411 URL |
[29] |
Jinnouchi R, Anderson A B. Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory[J]. Phys. Rev. B, 2008, 77(24):245417.
doi: 10.1103/PhysRevB.77.245417 URL |
[30] |
Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for densityfunctional study of nanocrystal surfaces and reaction pathways[J]. J. Chem. Phys., 2014, 140(8):084106.
doi: 10.1063/1.4865107 URL |
[31] |
Mathew K, Kolluru V S C, Mula S, Steinmann S N, Hennig R G. Implicit self-consistent electrolyte model in plane-wave density-functional theory[J]. J. Chem. Phys., 2019, 151(23):234101.
doi: 10.1063/1.5132354 URL |
[32] |
Nishihara S, Otani M. Hybrid solvation models for bulk, interface, and membrane: Reference interaction site methods coupled with density functional theory[J]. Phys. Rev. B, 2017, 96(11):115429.
doi: 10.1103/PhysRevB.96.115429 URL |
[33] |
Nattino F, Truscott M, Marzari N, Andreussi O. Continuum models of the electrochemical diffuse layer in electronicstructure calculations[J]. J. Chem. Phys., 2018, 150(4):041722.
doi: 10.1063/1.5054588 URL |
[34] |
Hörmann N G, Andreussi O, Marzari N. Grand canonical simulations of electrochemical interfaces in implicit solvation models[J]. J. Chem. Phys., 2019, 150(4):041730.
doi: 10.1063/1.5054580 URL |
[35] |
Melander M M, Kuisma M J, Christensen T E K, Honkala K. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials[J]. J. Chem. Phys., 2018, 150(4):041706.
doi: 10.1063/1.5047829 URL |
[36] |
Le J B, Iannuzzi M, Cuesta A, Cheng J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics[J]. Phys. Rev. Lett., 2017, 119(1):016801.
doi: 10.1103/PhysRevLett.119.016801 URL |
[37] |
Sakong S, Groβ A. The electric double layer at metalwater interfaces revisited based on a charge polarization scheme[J]. J. Chem. Phys., 2018, 149(8):084705.
doi: 10.1063/1.5040056 URL |
[38] |
Sakong S, Groβ A. Water structures on a Pt(111) electrode from ab initio molecular dynamic simulations for a variety of electro-chemical conditions[J]. Phys. Chem. Chem. Phys., 2020, 22(19):10431-10437.
doi: 10.1039/c9cp06584a pmid: 31976502 |
[39] |
Le J B, Chen A, Li L, Xiong J F, Lan J G, Liu Y P, Iannuzzi M, Cheng J. Modeling electrified Pt(111)-Had/water interfaces from ab initio molecular dynamics[J]. JACS Au, 2021, 1(5):569-577.
doi: 10.1021/jacsau.1c00108 URL |
[40] |
Huang J, Li P, Chen S L. Potential of zero charge and surface charging relation of metal-solution interphases from a constant-poten-tial Jellium-Poisson-Boltzmann model[J]. Phys. Rev. B, 2020, 101(12):125422.
doi: 10.1103/PhysRevB.101.125422 URL |
[41] |
Huang J. Hybrid density-potential functional theory of electric double layers[J]. Electrochim. Acta, 2021, 389:138720.
doi: 10.1016/j.electacta.2021.138720 URL |
[42] | Karasiev V V, Trickey S B. Chapter nine-frank discussion of the status of ground-state orbital-free DFT[M]//Advances in quantum chemistry. Sabin J R, Cabrera-Trujillo R, Editors, Academic Press, 2015: 221-245. |
[43] | Wang Y A, Carter E A. Orbital-free kinetic-energy density functional theory, in Theoretical methods in condensed phase chemistry[M]. Schwartz S D, Editor, Springer Netherlands: Dordrecht, 2002: 117-184. |
[44] |
Gavini V, Bhattacharya K, Ortiz M. Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation[J]. J. Mech. Phys. Solids, 2007, 55(4):697-718.
doi: 10.1016/j.jmps.2007.01.012 URL |
[45] |
Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. J. Phys. Chem., 1959, 63(9):1381-1387.
doi: 10.1021/j150579a011 URL |
[46] |
Bazant M Z, Kilic M S, Storey B D, Ajdari A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions[J]. Adv. Colloid Interface, 2009, 152(1-2):48-88.
doi: 10.1016/j.cis.2009.10.001 URL |
[47] |
Kornyshev A A. Double-layer in ionic liquids: Paradigm change?[J]. J. Phys. Chem. B, 2007, 111(20):5545-5557.
doi: 10.1021/jp067857o URL |
[48] |
Zhang Y F, Huang J. Treatment of ion-size asymmetry in lattice-gas models for electrical double layer[J]. J. Phys. Chem. C, 2018, 122(50):28652-28664.
doi: 10.1021/acs.jpcc.8b08298 URL |
[49] |
Zhang L L, Cai J, Chen Y X, Huang J. Modelling electrocatalytic reactions with a concerted treatment of multistep electron transfer kinetics and local reaction conditions[J]. J. Phys. Condens. Mat., 2021, 33(50):504002.
doi: 10.1088/1361-648X/ac26fb URL |
[50] |
Zhang Z M, Gao Y, Chen S L, Huang J. Understanding dynamics of electrochemical double layers via a modified concentrated solution theory[J]. J. Electrochem. Soc., 2019. 167(1):013519.
doi: 10.1149/2.0192001JES URL |
[51] |
Budkov Y A. Nonlocal statistical field theory of dipolar particles in electrolyte solutions[J]. J. Phys. Condens. Mat., 2018, 30(34):344001.
doi: 10.1088/1361-648X/aad3ee URL |
[52] |
Budkov Y A. Statistical field theory of ion-molecular solutions[J]. Phys. Chem. Chem. Phys., 2020, 22(26):14756-14772.
doi: 10.1039/d0cp02432e pmid: 32578625 |
[53] |
Huang J. Confinement induced dilution: Electrostatic screening length anomaly in concentrated electrolytes in confined space[J]. J. Phys. Chem. C, 2018, 122(6):3428-3433.
doi: 10.1021/acs.jpcc.7b11093 URL |
[54] |
Gao Y, Huang J, Liu Y W, Yan J W, Mao B W, Chen S L. Ion-vacancy coupled charge transfer model for ion transport in con-centrated solutions[J]. Sci. China. Chem., 2019, 62(4):515-520.
doi: 10.1007/s11426-018-9423-8 |
[55] | Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications[M]. 2nd ed. Russ. J. Electrochem., New York: Wiley, 2002, 38:1364-1365. |
[56] | Bockris J O’ m, Devanathan M A V, Müller K. On the structure of charged interfaces[J]. Roy. Soc. A, 1963, 274(541):55-79. |
[57] |
Huang J, Li Z, Liaw B Y, Zhang J B. Graphical analysis of electrochemical impedance spectroscopy data in bode and Nyquist representations[J]. J. Power Sources, 2016, 309:82-98.
doi: 10.1016/j.jpowsour.2016.01.073 URL |
[58] |
Li C K, Huang J. Impedance response of electrochemical interfaces: Part i. Exact analytical expressions for ideally polarizable electrodes[J]. J. Electrochem. Soc., 2021, 167(16):166517.
doi: 10.1149/1945-7111/abd450 URL |
[59] |
Klotz D, Schönleber M, Schmidt J, Ivers-Tiffée E. New approach for the calculation of impedance spectra out of time domain data[J]. Electrochim. Acta, 2011, 56(24):8763-8769.
doi: 10.1016/j.electacta.2011.07.096 URL |
[60] | Nussbaumer H J. The fast fourier transform, in fast fourier transform and convolution algorithms[M]. Nussbaumer H J, Editor, Springer Berlin Heidelberg: Berlin, Heidelberg, 1981: 80-111. |
[1] | Xiang Li, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jia Wang, Yang Liu, Yu-Feng Zhao, Juan Wang, Jiu-Jun Zhang. Fundamentals of Electrochemical Impedance Spectroscopy for Macrohomogeneous Porous Electrodes [J]. Journal of Electrochemistry, 2021, 27(5): 467-497. |
[2] | Zhuan-Yun Cai, Jia Liu, Si-Yuan Guan, De-Yin Wu, Zhong-Qun Tian. Theoretical Study on Electrical Properties of Molecular Junctions of Viologen Derivatives [J]. Journal of Electrochemistry, 2021, 27(1): 92-99. |
[3] | WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling [J]. Journal of Electrochemistry, 2020, 26(6): 777-788. |
[4] | WANG Jia, HUANG Qiu-an, LI Wei-heng, WANG Juan, ZHUANG Quan-chao, ZHANG Jiu-jun. Fundamentals of Distribution of Relaxation Times for Electrochemical Impedance Spectroscopy [J]. Journal of Electrochemistry, 2020, 26(5): 607-627. |
[5] | GUO Jian-wei, WANG Jian-long . The Pilot Application of Electrochemical Impedance Spectroscopy on Dynamic Proton Exchange Membrane Fuel Cell [J]. Journal of Electrochemistry, 2018, 24(6): 687-696. |
[6] | WEI Yi-min. Intrinsic Kinetic Properties of Ternary Material for Lithium Ion Batteries Assessed by Single Particle Microelectrode [J]. Journal of Electrochemistry, 2018, 24(1): 81-88. |
[7] | LIAO Qun ZHANG Shu-feng LENG Wen-hua. Kinetics and Mechanism toward Electrochemical Reductions of Sodium Bromide and Methanol over Iron Electrodes [J]. Journal of Electrochemistry, 2017, 23(6): 645-653. |
[8] | SHI Kun-ming, GUO Jian-wei, WANG Jia. The Study of Dynamical Electrochemical Impedance Spectroscopy for Oxygen Reduction Reaction on Pt/C Catalyst [J]. Journal of Electrochemistry, 2016, 22(5): 542-548. |
[9] | ZHANG Xiao, ZHONG Yun-xin, YAN Jia-wei*, MAO Bing-wei*. In-Situ AFM Force Curve Investigations on Layered Structures of Au(111)-Ionic Liquid Interfaces and Temperature Dependence [J]. Journal of Electrochemistry, 2014, 20(4): 295-301. |
[10] | LI Yang, HUANG Bo*, YUAN Meng, ZHANG Zhi-qiu, LIU Zong-yao, TANG Xu-chen, ZHU Xin-jian. Fabrication and Impedance Performance of Gradient LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2 Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2014, 20(1): 45-50. |
[11] | LENG Wen-hua*, ZHU Hong-qiao. An Investigation of Photocatalytic Degradation Reactions of Pollutants by Combination of (Photo)electrochemical Measurements [J]. Journal of Electrochemistry, 2013, 19(5): 437-443. |
[12] | REN Rui-Xuan, HUANG Bo, ZHU Xin-Jian, HU Yi-Xing, DING Xiao-Yi, LIU Zong-Yao, LIU Ye-Bin. Fabrication and Performance of LaNi0.6Fe0.4O3-δ Cathode Modified by Coating with Gd0.2Ce0.8O2 for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2013, 19(3): 275-280. |
[13] | CUI Cong-Ying, MA Xue-Mei, KONG De-Long, MA Hou-Yi*. A Comparative Study of Charge-Discharge Behaviors of α-PbO2 and β-PbO2 Cathodes [J]. Journal of Electrochemistry, 2013, 19(1): 43-52. |
[14] | ZHANG Ya-Li, XIN Sen, GUO Yu-Guo, WAN Li-Jun. Comments on Internal Alternating Current Resistance Test Standard and Methods of Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2012, 18(3): 205-214. |
[15] | JIA Bing-li,CAO Fa-he,CHEN An-na,ZHANG Jian-qing. Electrochemical Detection for the Corrosion of Reinforcing Steel in Concrete During Immersion and Drying Cycles [J]. Journal of Electrochemistry, 2010, 16(4): 355-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||