Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (3): 2108461. doi: 10.13208/j.electrochem.210846
• Special Issue: Frontier of Electrochemistry • Previous Articles Next Articles
Ya-Jie Song1, Xue Sun1, Li-Ping Ren1, Lei Zhao1,2, Fan-Peng Kong1,*(), Jia-Jun Wang1,*(
)
Received:
2021-10-17
Revised:
2021-12-04
Online:
2022-03-28
Published:
2021-12-18
Contact:
Fan-Peng Kong,Jia-Jun Wang
E-mail:fpkong@hit.edu.cn;jiajunhit@hit.edu.cn
Ya-Jie Song, Xue Sun, Li-Ping Ren, Lei Zhao, Fan-Peng Kong, Jia-Jun Wang. Synchrotron X-Rays Characterizations of Metal-Air Batteries[J]. Journal of Electrochemistry, 2022, 28(3): 2108461.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.210846
Technique | Information | Sample Property | Advantage | Limitation |
---|---|---|---|---|
SXRD | Structure lattice plane | Contains crystal structure | Structural Analysis | Does not work for noncrystalline samples |
SRPES | Chemistry | Solids, liquids | Chemical composition analysis | Low spatial resolution |
XAFS | Coordination and valence, etc. | Solids, liquids, gases | Microstructure analysis Mechanistic analysis | The information provided is the average structure |
STXM | Elemental (including light elements) | Solids | Light-element mapping Chemical composition distribution | Thin sample, vacuum chamber |
SR CT | 2D/3D imaging | Contains solidphase | Morphological evolution Product distribution | Weak image contrast for light elements |
[1] | Abraham D. Advances in lithium-ion battery research and technology[J]. JOM-J. Miner. Met. Mater. Soc., 2002, 54(3):18-19. |
[2] | Thackeray M M, Thomas J O, Whittingham M S. Science and applications of mixed conductors for lithium batteries[J]. MRS Bull., 2000, 25(3):39-46. |
[3] | Yang Y F, Yang J L, Pan F, Cui Y. From intercalation to alloying chemistry: Structural design of silicon anodes for the next generation of lithium-ion batteries[J]. Chinese J. Struct. Chem., 2020, 39(1):16-19. |
[4] |
Shao Y Q, Jiang Z S, Zhang Q Q, Guan J Q. Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction[J]. ChemSusChem, 2019, 12(10):2133-2146.
doi: 10.1002/cssc.201900060 URL |
[5] |
Dabill D W, Walsh P T. The effect of hyperbaric pressure on catalytic and electrochemical gas sensors[J]. Sens. Actuators B Chem., 1996, 30(2):111-119.
doi: 10.1016/0925-4005(95)01757-M URL |
[6] |
Cao R G, Lee J S, Liu M L, Cho J. Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater., 2012, 2(7):816-829.
doi: 10.1002/aenm.201200013 URL |
[7] |
Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions[J]. J. Power Sources, 2010, 195(18):6187-6191.
doi: 10.1016/j.jpowsour.2009.11.023 URL |
[8] |
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114(23):11636-11682.
doi: 10.1021/cr500192f pmid: 25390643 |
[9] |
Yin W W, Fu Z W. The potential of Na-air batteries[J]. ChemCatChem, 2017, 9(9):1545-1553.
doi: 10.1002/cctc.201600646 URL |
[10] |
Otaegui L, Rodriguez-Martinez L M, Wang L, Laresgoiti A, Tsukamoto H, Han M H, Tsai C L, Laresgoiti I, Lopez C M, Rojo T. Performance and stability of a liquid anode high-temperature metal-air battery[J]. J. Power Sources, 2014, 247:749-755.
doi: 10.1016/j.jpowsour.2013.09.029 URL |
[11] |
Crowther O, Keeny D, Moureau D M, Meyer B, Salomon M, Hendrickson M. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane[J]. J. Power Sources, 2012, 202:347-351.
doi: 10.1016/j.jpowsour.2011.11.024 URL |
[12] |
Jung K N, Hwang S M, Park M S, Kim K J, Kim J G, Dou S X, Kim J H, Lee J W. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries[J]. Sci. Rep., 2015, 5:7665.
doi: 10.1038/srep07665 URL |
[13] |
Bai J J, Lu H M, Cao Y, Li X D, Wang J R. A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries[J]. RSC Adv., 2017, 7(49):30603-30609.
doi: 10.1039/C7RA05035F URL |
[14] |
Liu J T, Xie Y, Gao Q, Cao F H, Qin L, Wu Z Y, Zhang W, Li H, Zhang C L. 1D MOF-derived N-doped porous carbon nanofibers encapsulated with Fe3C nanoparticles for efficient bifunctional electrocatalysis[J]. Eur. J. Inorg. Chem., 2020, 2020(6):581-589.
doi: 10.1002/ejic.201901244 URL |
[15] |
Zhao N, Li C L, Guo X X. Long-life Na-O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential[J]. Phys. Chem. Chem. Phys., 2014, 16(29):15646-15652.
doi: 10.1039/c4cp01961j URL |
[16] |
Wang L G, Dai A V, Xu W Q, Lee S, Cha W, Harder R, Liu T C, Ren Y, Yin G P, Zuo P J, Wang J, Lu J, Wang J J. Structural distortion induced by manganese activation in a lithium-rich layered cathode[J]. J. Am. Chem. Soc., 2020, 142(35):14966-14973.
doi: 10.1021/jacs.0c05498 URL |
[17] |
Zhang F, Lou S F, Li S, Yu Z J, Liu Q S, Dai A, Cao C T, Toney M F, Ge M Y, Xiao X H, Lee W K, Yao Y D, Deng J J, Liu T C, Tang Y P, Yin G P, Lu J, Su D, Wang J J. Surface regulation enables high stability of single-cry-stal lithium-ion cathodes at high voltage[J]. Nat. Commun., 2020, 11(1):3035.
doi: 10.1038/s41467-020-15541-0 URL |
[18] |
Sun N, Liu Q S, Cao Y, Lou S F, Ge M Y, Xiao X H, Lee W K, Gao Y Z, Yin G P, Wang J J, Sun X L. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angew. Chem. Int. Ed., 2019, 58(51):18647-18653.
doi: 10.1002/anie.201910993 URL |
[19] |
Lou S F, Liu Q W, Zhang F, Liu Q S, Yu Z J, Mu T S, Zhao Y, Borovilas J, Chen Y J, Ge M Y, Xiao X H, Lee W K, Yin G P, Yang Y, Sun X L, Wang J J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nat. Commun., 2020, 11(1):5700.
doi: 10.1038/s41467-020-19528-9 URL |
[20] |
Wang J J, Chen-Wiegart Y C K, Eng C, Shen Q, Wang J. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles[J]. Nat. Commun., 2016, 7:12372.
doi: 10.1038/ncomms12372 URL |
[21] |
Jacobsen C, Kirz J. X-ray microscopy with synchrotron radiation[J]. Nat. Struct. Biol., 1998, 5:650-653.
doi: 10.1038/1341 URL |
[22] |
Bodo G, Ghisellini G, Trussoni E. Diamagnetic effects in synchrotron sources[J]. Mon. Not. R. Astron. Soc., 1992, 255(4):694-700.
doi: 10.1093/mnras/255.4.694 URL |
[23] |
Herklotz M, Weiss J, Ahrens E, Yavuz M, Mereacre L, Kiziltas-Yavuz N, Drager C, Ehrenberg H, Eckert J, Fauth F, Giebeler L, Knapp M. A novel high-throughput setup for in situ powder diffraction on coin cell batteries[J]. J. Appl. Crystallogr., 2016, 49:340-345.
doi: 10.1107/S1600576715022165 URL |
[24] |
Wang J J, Chen-Wiegart Y C K, Wang J. In situ three-di-mensional synchrotron X-ray nanotomography of the (De)lithiation processes in tin anodes[J]. Angew. Chem. Int. Ed., 2014, 53(17):4460-4464.
doi: 10.1002/anie.201310402 URL |
[25] |
Wang J J, Chen-Wiegart Y C K, Wang J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nat. Commun., 2014, 5:4570.
doi: 10.1038/ncomms5570 URL |
[26] |
Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Adv. Mater., 2021, 33(6):2000721.
doi: 10.1002/adma.202000721 URL |
[27] |
Lou S F, Yu Z J, Liu Q S, Wang H, Chen M, Wang J J. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale[J]. Chem, 2020, 6(9):2199-2218.
doi: 10.1016/j.chempr.2020.06.030 URL |
[28] |
Wang L G, Wang J J, Zuo P J. Probing battery electrochemistry with in operando synchrotron X-ray imaging techniques[J]. Small Methods, 2018, 2(8):1700293.
doi: 10.1002/smtd.201700293 URL |
[29] |
Cao C T, Toney M F, Sham S K, Harder R, Shearing P R, Xiao X H, Wang J J. Emerging X-ray imaging technologies for energy materials[J]. Mater. Today, 2020, 34:132-147.
doi: 10.1016/j.mattod.2019.08.011 URL |
[30] |
Rahimabadi P S, Khodaei M, Koswattage K R. Review on applications of synchrotron-based X-ray techniques in materials characterization[J]. X-Ray Spectrom., 2020, 49(3):348-373.
doi: 10.1002/xrs.3141 URL |
[31] |
Paterson A, Stevens R. Phase analysis of sintered yttria-zirconia ceramics by X-ray diffraction[J]. J. Mater. Res., 1986, 1(2):295-299.
doi: 10.1557/JMR.1986.0295 URL |
[32] |
Scardi P, Leoni M, Cappuccio G, Sessa V, Terranova M L. Residual stress in polycrystalline diamond Ti6Al4Vsystems[J]. Diamond Relat. Mater., 1997, 6(5-7):807-811.
doi: 10.1016/S0925-9635(96)00605-X URL |
[33] |
Vink T J, Somers M A J, Daams J L C, Dirks A G. Stress, strain, and microstructure of sputter-deposited Mo thin-films[J]. J. Appl. Phys., 1991, 70(8):4301-4308.
doi: 10.1063/1.349108 URL |
[34] |
Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J, Kanno R. Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction[J]. J. Am. Chem. Soc., 2010, 132(43):15268-15276.
doi: 10.1021/ja105389t pmid: 20939527 |
[35] | Wu C J, Hua W B, Zhang Z, Zhong B H, Yang Z G, Feng G L, Xiang W, Wu Z G, Guo X D. Design and synjournal of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries[J]. Adv. Sci. Lett., 2018, 5(9):1800519. |
[36] | Gonzalo E, Zarrabeitia M, Drewett N E, del Amo J M L, Rojo T. Sodium manganese-rich layered oxides: potential candidates as positive electrode for sodium-ion batteries[J]. Energy Stor. Mater., 2021, 34:682-707. |
[37] |
Gu X D, Reinspach J, Worfolk B J, Diao Y, Zhou Y, Yan H P, Gu K V, Mannsfeld S, Toney M F, Bao Z N. Compact roll-to-roll coater for in situ X-ray diffraction characterization of organic electronics printing[J]. ACS Appl. Mater. Interfaces, 2016, 8(3):1687-1694.
doi: 10.1021/acsami.5b09174 URL |
[38] |
Shui J L, Okasinski J S, Liu D J. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nat. Commun., 2013, 4:2255.
doi: 10.1038/ncomms3255 URL |
[39] |
Lupina G, Schroeder T, Dabrowski J, Wenger C, Mane A, Lippert G, Mussig H J, Hoffmann P, Schmeisser D. Praseodymium silicate layers with atomically abrupt interface on Si(100)[J]. Appl. Phys. Lett., 2005, 87(9):092901
doi: 10.1063/1.2032596 URL |
[40] | King G C, Yencha A J, Lopes M C A. Threshold photoelectron spectroscopy using synchrotron radiation[J]. Application of Accelerators in Research and Industry, 2001, 576:703-706. |
[41] |
Sun Z H, Liu Q H, Yao T, Yan W S, Wei S Q. X-ray absorption fine structure spectroscopy in nanomaterials[J]. Sci. China. Mater., 2015, 58(4):313-341.
doi: 10.1007/s40843-015-0043-4 URL |
[42] |
Fujikawa T, Rehr J J, Wada Y, Nagamatsu S. Approximate spherical wave Debye-Waller factors in EXAFS and XANES spectra[J]. J. Phys. Soc. Jpn., 1999, 68(4):1259-1268.
doi: 10.1143/JPSJ.68.1259 URL |
[43] |
Fornasini P, Grisenti R, Dapiaggi M, Agostini G. Local structural distortions in SnTe investigated by EXAFS[J]. J. Phys. Condens. Matter, 2021, 33(29):295404.
doi: 10.1088/1361-648X/ac0082 URL |
[44] | Husain H, Hariyanto B, Sulthonul M, Thamatkeng P, Pratapa S. Local structure examination of mineral-derived Fe2O3 powder by Fe K-edge EXAFS and XANES[C]//Proceedings of 5th International Conference on Advanced Materials Sciences and Technology. Makassar City, Indonesia, September 19-20, 2017. |
[45] | Naftel S J, Coulthard I, Hu Y, Sham T K, Zinke-Allmang M. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films[C]//Proceedings of Applications of Synchrotron Radiation Techniques to Materials Science IV. San Francisco City, United States of America, April 13-17, 1998. |
[46] | Yonemura T, Iihara J, Uemura S, Yamaguchi K, Niibe M. Development of the Surface-sensitive Soft X-ray Absorption Fine Structure Measurement Technique for the Bulk Insulator[C]//Proceedings of 12th International Conference on Synchrotron Radiation Instrumentation. New York City, United States of America, July 06-10, 2015. |
[47] |
Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S. X-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC[J]. Sci. Rep., 2012, 2:831.
doi: 10.1038/srep00831 pmid: 23152937 |
[48] |
Hoffman C L, Nicholas S L, Ohnemus D C, Fitzsimmons J N, Sherrell R M, German C R, Heller M I, Lee J M, Lam P J, Toner B M. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15 degrees S[J]. Mar. Chem., 2018, 201:183-197.
doi: 10.1016/j.marchem.2018.01.011 URL |
[49] |
Li L S, Chen-Wiegart Y C K, Wang J J, Gao P, Ding Q, Yu Y S, Wang F, Cabana J, Wang J, Jin S. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging[J]. Nat. Commun., 2015, 6:6883.
doi: 10.1038/ncomms7883 URL |
[50] |
Tsai P C, Wen B H, Wolfman M, Choe M J, Pan M S, Su L, Thornton K, Cabana J, Chiang Y M. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy Environ. Sci., 2018, 11(4):860-871.
doi: 10.1039/C8EE00001H URL |
[51] | Elango R, Demortiere A, De Andrade V, Morcrette M, Seznec V. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Adv. Energy Ma-ter., 2018, 8(15):1703031. |
[52] |
Zhao C H, Wada T, De Andrade V, Gursoy D, Kato H, Chen-Wiegart Y C K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography[J]. Nano Energy, 2018, 52:381-390.
doi: 10.1016/j.nanoen.2018.08.009 URL |
[53] |
Sun L, Liu D X. Chemical activation of commercial CNTs with simultaneous surface deposition of manganese oxide nano flakes for the creation of CNTs-graphene supported oxygen reduction ternary composite catalysts applied in air fuel cell[J]. Appl. Surf. Sci., 2018, 447:518-527.
doi: 10.1016/j.apsusc.2018.04.025 URL |
[54] |
Wang Y Q, Yu B Y, Liu K, Yang X T, Liu M, Chan T S, Qiu X Q, Li J, Li W Z. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries[J]. J. Mater. Chem. A, 2020, 8(4):2131-2139.
doi: 10.1039/C9TA12171D URL |
[55] |
Kim T, Ohata Y, Kim J, Rhee C K, Miyawaki J, Yoon S H. Fe nanoparticle entrained in tubular carbon nanofiber as an effective electrode material for metal-air batteries: A fundamental reason[J]. Carbon, 2014, 80:698-707.
doi: 10.1016/j.carbon.2014.09.014 URL |
[56] |
de Vasconcelos G J Q, Miqueles E X, Costa G S R. Responsive alignment for X-ray tomography beamlines[J]. J. Synchrotron Radiat., 2018, 25:1774-1779.
doi: 10.1107/S1600577518012201 pmid: 30407189 |
[57] |
Morrell A P, Mosselmans J F W, Geraki K, Ignatyev K, Castillo-Michel H, Monksfield P, Warfield A T, Febbraio M, Roberts H M, Addison O, Martin R A. Implications of X-ray beam profiles on qualitative and quantitative synchrotron micro-focus X-ray fluorescence microscopy[J]. J. Synchrotron Radiat., 2018, 25:1719-1726.
doi: 10.1107/S160057751801247X URL |
[58] |
Sun F, Gao R, Zhou D, Osenberg M, Dong K, Kardjilov N, Hilger A, Markotter H, Bieker P M, Liu X F, Manke I. Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography[J]. ACS Energy Lett., 2019, 4(1):306-316.
doi: 10.1021/acsenergylett.8b02242 |
[59] |
Tan P, Jiang H R, Zhu X B, An L, Jung C Y, Wu M C, Shi L, Shyy W, Zhao T S. Advances and challenges in lithium-air batteries[J]. Appl. Energy, 2017, 204:780-806.
doi: 10.1016/j.apenergy.2017.07.054 URL |
[60] | Wang Y, Lu Y C. Nonaqueous lithium-oxygen batteries: Reaction mechanism and critical open questions[J]. Energy Stor. Mater., 2020, 28:235-246. |
[61] |
Yamaki J I, Tobishima S I, Sakurai Y, Saito K I, Hayashi K. Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V2O5 cathodes[J]. J. Appl. Electrochem., 1998, 28(2):135-140.
doi: 10.1023/A:1003270406759 URL |
[62] |
Takehara Z. Future prospects of the lithium metal anode[J]. J. Power Sources, 1997, 68(1):82-86.
doi: 10.1016/S0378-7753(96)02546-3 URL |
[63] |
Wang X F, Feng Z J, Huang J T, Deng W, Li X B, Zhang H S, Wen Z H. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127:149-157.
doi: 10.1016/j.carbon.2017.10.101 URL |
[64] |
Sun F, Zielke L, Markoetter H, Hilger A, Zhou D, Moroni R, Zengerle R, Thiele S, Banhart J, Manke I. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano, 2016, 10(8):7990-7997.
doi: 10.1021/acsnano.6b03939 pmid: 27463258 |
[65] |
Younesi R, Hahlin M, Edstrom K. Surface characterization of the carbon cathode and the lithium anode of Li-O2 batteries using LiClO4 or LiBOB salts[J]. ACS Appl. Mater. Interfaces, 2013, 5(4):1333-1341.
doi: 10.1021/am3026129 URL |
[66] |
Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K. Redox mediators for Li-O2 batteries: Status and perspectives[J]. Adv. Mater., 2018, 30(1):1704162.
doi: 10.1002/adma.201704162 URL |
[67] |
Zhang T, Liao K M, He P, Zhou H S. A self-defense redox mediator for efficient lithium-O2 batteries[J]. Energy Environ. Sci., 2016, 9(3):1024-1030.
doi: 10.1039/C5EE02803E URL |
[68] |
Cremasco L F, Anchieta C G, Nepel T C M, Miranda A N, Sousa B P, Rodella C B, Filho R M, Doubek G. Operando synchrotron XRD of bromide mediated Li-O2 battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(11):13123-13131.
doi: 10.1021/acsami.0c21791 URL |
[69] |
Landa-Medrano I, Olivares-Marin M, Bergner B, Pinedo R, Sorrentino A, Pereiro E, de Larramendi I R, Janek J, Rojo T, Tonti D. Potassium salts as electrolyte additives in lithium-oxygen batteries[J]. J. Phys. Chem. C, 2017, 121(7):3822-3829.
doi: 10.1021/acs.jpcc.7b00355 URL |
[70] |
Olivares-Marin M, Sorrentino A, Pereiro E, Tonti D. Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy[J]. J. Power Sources, 2017, 359:234-241.
doi: 10.1016/j.jpowsour.2017.05.039 URL |
[71] |
Yao K P C, Risch M, Sayed S Y, Lee Y L, Harding J R, Grimaud A, Pour N, Xu Z C, Zhou J G, Mansour A, Barde F, Shao-Horn Y. Solid-state activation of Li2O2 oxidation kinetics and implications for Li-O2 batteries[J]. Energy Environ. Sci., 2015, 8(8):2417-2426.
doi: 10.1039/C5EE00967G URL |
[72] | Song M, Zhu D, Zhang L, Wang X F, Huang L H, Shi Q W, Mi R, Liu H, Mei J, Lau L W M, Chen Y G. Temperature dependence of charging characteristic of C-free Li2O2 cathode in Li-O2 battery[J]. J. Solid State Electro-chem., 2013, 17(7):2061-2069. |
[73] | Xu W, Viswanathan V V, Wang D Y, Towne S A, Xiao J, Nie Z M, Hu D H, Zhang J G. Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes[J]. J. Power Sour-ces, 2011, 196(8):3894-3899. |
[74] |
Wang H, Kou R H, Jin Q, Liu Y Z, Yin F X, Sun C J, Wang L, Ma Z Y, Ren Y, Liu N, Chen B H. Boosting the oxygen reduction performance via tuning the synergy between metal core and oxide shell of metal-organic frameworks-derived Co@CoOx[J]. Chemelectrochem, 2020, 7(7):1590-1597.
doi: 10.1002/celc.202000038 URL |
[75] |
Gao R, Zhou D, Ning D, Zhang W J, Huang L, Sun F, Schuck G, Schumacher G, Hu Z B, Liu X F. Probing the self-boosting catalysis of LiCoO2 in Li-O2 battery with multiple in situ/operando techniques[J]. Adv. Funct. Mater., 2020, 30(28):2002223.
doi: 10.1002/adfm.202002223 URL |
[76] |
Su Z L, De Andrade V, Cretu S, Yin Y H, Wojcik M J, Franco A A, Demortiere A. X-ray nanocomputed tomography in zernike phase contrast for studying 3D morphology of Li-O2 battery electrode[J]. ACS Appl. Energy Mater., 2020, 3(5):4093-4102.
doi: 10.1021/acsaem.9b02236 URL |
[77] |
Zhao C T, Liang J W, Li X N, Holmes N, Wang C H, Wang J, Zhao F P, Li S F, Sun Q, Yang X F, Liang J N, Lin X T, Li W H, Li R Y, Zhao S Q, Huang H, Zhang L, Lu S G, Sun X L. Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li-O2 batteries[J]. Nano Energy, 2020, 75:105036.
doi: 10.1016/j.nanoen.2020.105036 URL |
[78] |
Olivares-Marin M, Sorrentino A, Lee R C, Pereiro E, Wu N L, Tonti D. Spatial distributions of discharged products of lithium-oxygen batteries revealed by synchrotron X-ray transmission microscopy[J]. Nano Lett., 2015, 15(10):6932-6938.
doi: 10.1021/acs.nanolett.5b02862 pmid: 26339872 |
[79] |
Younesi R, Urbonaite S, Edstrom K, Hahlin M. The cathode surface composition of a cycled Li-O2 battery: A photoelectron spectroscopy study[J]. J. Phys. Chem. C, 2012, 116(39):20673-20680.
doi: 10.1021/jp302168h URL |
[80] |
Sun B, Pompe C, Dongmo S, Zhang J Q, Kretschmer K, Schroder D, Janek J, Wang G X. Challenges for developing rechargeable room-temperature sodium oxygen batteries[J]. Adv. Mater. Technol., 2018, 3(9):1800110.
doi: 10.1002/admt.201800110 URL |
[81] |
Hartmann P, Bender C L, Vracar M, Durr A K, Garsuch A, Janek J, Adelhelm P. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nat. Mater., 2013, 12(3):228-232.
doi: 10.1038/nmat3486 pmid: 23202372 |
[82] |
Mekonnen Y S, Christensen R, Garcia-Lastra J M, Vegge T. Thermodynamic and kinetic limitations for peroxide and superoxide formation in Na-O2 batteries[J]. J. Phys. Chem. Lett., 2018, 9(15):4413-4419.
doi: 10.1021/acs.jpclett.8b01790 URL |
[83] |
Kim J, Lim H D, Gwon H, Kang K. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Phys. Chem. Chem. Phys., 2013, 15(10):3623-3629.
doi: 10.1039/c3cp43225d URL |
[84] |
Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(6):3205-3211.
doi: 10.1002/anie.202012787 URL |
[85] |
Black R, Shyamsunder A, Adeli P, Kundu D, Murphy G K, Nazar L F. The nature and impact of side reactions in glyme-based sodium-oxygen batteries[J]. ChemSusChem, 2016, 9(14):1795-1803.
doi: 10.1002/cssc.201600034 URL |
[86] |
Lin X T, Sun F, Sun Q, Wang S Z, Luo J, Zhao C T, Yang X F, Zhao Y, Wang C H, Li R Y, Sun X L. O2/O2- crossover- and dendrite-free hybrid solid-state Na-O2 batteries[J]. Chem. Mater., 2019, 31(21):9024-9031.
doi: 10.1021/acs.chemmater.9b03266 URL |
[87] |
Zhang Y T, Ma L P, Zhang L Q, Peng Z Q. Identifying a stable counter/reference electrode for the study of aprotic Na-O2 batteries[J]. J. Electrochem. Soc., 2016, 163(7):A1270-A1274.
doi: 10.1149/2.0871607jes URL |
[88] |
Zhu Y M, Yang F, Guo M H, Chen L, Gu M. Real-time imaging of the electrochemical process in Na-O2 nano-batteries using Pt@CNT and Pt0.8Ir0.2@CNT air cathodes[J]. ACS Nano, 2019, 13(12):14399-14407.
doi: 10.1021/acsnano.9b07961 URL |
[89] |
Frith J T, Landa-Medrano I, de Larramendi I R, Rojo T, Owen J R, Garcia-Araez N. Improving Na-O2 batteries with redox mediators[J]. Chem. Commun., 2017, 53(88):12008-12011.
doi: 10.1039/C7CC06679A URL |
[90] |
Yang H, Sun J C, Wang H, Liang J, Li H X. A titanium dioxide nanoparticle sandwiched separator for Na-O2 batteries with suppressed dendrites and extended cycle life[J]. Chem. Commun., 2018, 54(32):4057-4060.
doi: 10.1039/C8CC00993G URL |
[91] |
Jia P, Yang T T, Liu Q N, Yan J T, Shen T D, Zhang L Q, Liu Y N, Zhao X X, Gao Z Y, Wang J, Tang Y F, Huang J Y. In-situ imaging Co3O4 catalyzed oxygen reduction and evolution reactions in a solid state Na-O2 battery[J]. Nano Energy, 2020, 77:105289.
doi: 10.1016/j.nanoen.2020.105289 URL |
[92] |
Shu C Z, Lin Y M, Zhang B S, Abd Hamid S B, Su D S. Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium-oxygen batteries[J]. J. Mater. Chem. A, 2016, 4(17):6610-6619.
doi: 10.1039/C6TA00901H URL |
[93] |
Wang J K, Gao R, Zheng L R, Chen Z J, Wu Z H, Sun L M, Hu Z B, Liu X F. CoO/CoP heterostructured nanosheets with an O-P interpenetrated interface as a bifunctional electrocatalyst for Na-O2 battery[J]. ACS Catal., 2018, 8(9):8953-8960.
doi: 10.1021/acscatal.8b01023 URL |
[94] |
Jin X, Li Y Y, Zhang S, Zhang J W, Shen Z H, Zhong C L, Cai Z Q, Hu C Q, Zhang H G. Ru single atoms induce surface-mediated discharge in Na-O2 batteries[J]. Chin. Chem. Lett., 2021, 33(1):491-496.
doi: 10.1016/j.cclet.2021.06.090 URL |
[95] |
Yadegari H, Banis M N, Xiao B W, Sun Q, Li X, Lushington A, Wang B Q, Li R Y, Sham T K, Cui X Y, Sun X L. Three-dimensional nanostructured air electrode for sodium-oxygen batteries: A mechanism study toward the cyclability of the cell[J]. Chem. Mater., 2015, 27(8):3040-3047.
doi: 10.1021/acs.chemmater.5b00435 URL |
[96] |
Liu H J, Osenberg M, Ni L, Hilger A, Chen L B, Zhou D, Dong K, Arlt T, Yao X Y, Wang X G, Manke I, Sun F. Sodiophilic and conductive carbon cloth guides sodium dendrite-free Na metal electrodeposition[J]. J. Energ. Chem., 2021, 61:61-70.
doi: 10.1016/j.jechem.2021.03.004 URL |
[97] | Ma M Y, Lu Y, Yan Z H, Chen J. In situ synjournal of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium-oxygen batteries[J]. Batteries & Supercaps, 2019, 2(8):663-667. |
[98] |
Luo W, Lin C F, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L B. Ultrathin surface coating enables the stable sodium metal anode[J]. Adv. Energy Mater., 2017, 7(2):1601526.
doi: 10.1002/aenm.201601526 URL |
[99] |
Sun B, Li P, Zhang J Q, Wang D, Munroe P, Wang C Y, Notten P H L, Wang G X. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries[J]. Adv. Mater., 2018, 30(29):1801334.
doi: 10.1002/adma.201801334 URL |
[100] |
Lin X T, Sun Q, Yadegari H, Yang X F, Zhao Y, Wang C H, Liang J N, Koo A, Li R Y, Sun X L. On the cycling performance of Na-O2 cells: Revealing the impact of the superoxide crossover toward the metallic Na electrode[J]. Adv. Funct. Mater., 2018, 28(35):1801904.
doi: 10.1002/adfm.201801904 URL |
[101] |
Sun Q, Liu J, Xiao B W, Wang B O, Banis M, Yadegari H, Adair K R, Li R Y, Sun X L. Visualizing the oxidation mechanism and morphological evolution of the cubic-shaped superoxide discharge product in Na-air batteries[J]. Adv. Funct. Mater., 2019, 29(13):1808332.
doi: 10.1002/adfm.201808332 URL |
[102] | Morasch R, Kwabi D G, Tulodziecki M, Risch M, Zhang S Y, Yang S H. Insights into electrochemical oxidation of NaO2 in Na-O2 batteries via rotating ring disk and spectroscopic measurements[J]. ACS Appl. Mater. Inter-faces, 2017, 9(5):4374-4381. |
[103] |
Schroder D, Bender C L, Osenberg M, Hilger A, Manke I, Janek J. Visualizing current-dependent morphology and distribution of discharge products in sodium-oxygen battery cathodes[J]. Sci. Rep., 2016, 6:24288.
doi: 10.1038/srep24288 URL |
[104] |
Landa-Medrano I, Sorrentino A, Stievano L, de Larramendi I R, Pereiro E, Lezama L, Rojo T, Tonti D. Architecture of Na-O2 battery deposits revealed by transmission X-ray microscopy[J]. Nano Energy, 2017, 37:224-231.
doi: 10.1016/j.nanoen.2017.05.021 URL |
[105] |
Fu J, Cano Z P, Park M G, Yu A P, Fowler M, Chen Z W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Adv. Mater., 2017, 29(7):1604685.
doi: 10.1002/adma.201604685 URL |
[106] |
Lee C W, Sathiyanarayanan K, Eom S W, Kim H S, Yun M S. Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells[J]. J. Power Sources, 2006, 160(1):161-164.
doi: 10.1016/j.jpowsour.2006.01.070 URL |
[107] |
Shi X J, He B B, Zhao L, Gong Y S, Wang R, Wang H W. FeS2-CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries[J]. J. Power Sources, 2021, 482:228955.
doi: 10.1016/j.jpowsour.2020.228955 URL |
[108] |
Zhu J W, Li W Q, Li S H, Zhang J, Zhou H, Zhang C T, Zhang J A, Mu S C. Defective N/S-Codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air batteries[J]. Small, 2018, 14(21):1800563.
doi: 10.1002/smll.201800563 URL |
[109] |
Guo L M, Deng J A, Wang G Z, Hao Y A, Bi K, Wang X H, Yang Y. N, P-doped CoS2 embedded in TiO2 nano-porous films for Zn-air batteries[J]. Adv. Funct. Mater., 2018, 28(42):1804540.
doi: 10.1002/adfm.201804540 URL |
[110] | Wang K K, Lin Z S, Tang Y, Tang Z H, Tao C L, Qin D D, Tian Y. Selenide/sulfide heterostructured NiCo2Se4/NiCoS4 for oxygen evolution reaction, hydrogen evolution reaction, water splitting and Zn-air batteries[J]. Ele-ctrochim. Acta, 2021, 368:137584. |
[111] |
Song S D, Li W J, Deng Y P, Ruan Y L, Zhang Y N, Qin X H, Chen Z W. TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries[J]. Nano Energy, 2020, 67:104208.
doi: 10.1016/j.nanoen.2019.104208 URL |
[112] |
Christensen M K, Mathiesen J K, Simonsen S B, Norby P. Transformation and migration in secondary zin-cair batteries studied by in situ synchrotron X-ray diffraction and X-ray tomography[J]. J. Mater. Chem. A, 2019, 7(11):6459-6466.
doi: 10.1039/c8ta11554k |
[113] |
Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2):485-502.
doi: 10.1016/j.joule.2018.11.002 URL |
[114] |
Zhang C, Wang J M, Zhang L, Zhang J Q, Cao C N. Study of the performance of secondary alkaline pasted zinc electrodes[J]. J. Appl. Electrochem., 2001, 31(9):1049-1054.
doi: 10.1023/A:1017923924121 URL |
[115] |
Wei X, Desai D, Yadav G G, Turney D E, Couzis A, Banerjee S. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries[J]. Electrochim. Acta, 2016, 212:603-613.
doi: 10.1016/j.electacta.2016.07.041 URL |
[116] |
Santos F, Abad J, Vila M, Castro G R, Urbina A, Romero A J F. In situ synchrotron X-ray diffraction study of Zn/Bi2O3 electrodes prior to and during discharge of Zn-air batteries: Influence on ZnO deposition[J]. Electrochim. Acta, 2018, 281:133-141.
doi: 10.1016/j.electacta.2018.05.138 URL |
[117] |
Yu J, Li B Q, Zhao C X, Liu J N, Zhang Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries[J]. Adv. Mater., 2020, 32(12):1908488.
doi: 10.1002/adma.201908488 URL |
[118] |
Li B Q, Zhao C X, Chen S M, Liu J N, Chen X, Song L, Zhang Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries[J]. Adv. Mater., 2019, 31(19):1900592.
doi: 10.1002/adma.201900592 URL |
[119] |
Pan Y, Liu S J, Sun K A, Chen X, Wang B, Wu K L, Cao X, Cheong W C, Shen R G, Han A J, Chen Z, Zheng L R, Luo J, Lin Y, Liu Y Q, Wang D S, Peng Q, Zhang Q, Chen C, Li Y D. A Bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(28):8614-8618.
doi: 10.1002/anie.201804349 URL |
[120] |
Yang L, Shi L, Wang D, Lv Y L, Cao D P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery[J]. Nano Energy, 2018, 50:691-698.
doi: 10.1016/j.nanoen.2018.06.023 URL |
[121] |
Wang J, Liu W, Luo G, Li Z J, Zhao C, Zhang H R, Zhu M Z, Xu Q, Wang X Q, Zhao C M, Qu Y T, Yang Z K, Yao T, Li Y F, Lin Y, Wu Y, Li Y D. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy Environ. Sci., 2018, 11(12):3375-3379.
doi: 10.1039/C8EE02656D URL |
[122] |
Han X P, Ling X F, Yu D S, Xie D Y, Li L L, Peng S J, Zhong C, Zhao N Q, Deng Y D, Hu W B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49):1905622.
doi: 10.1002/adma.201905622 URL |
[1] | WU Kai. Preparation and Process Optimization of Cathode Materials for Lithium-Sulfur Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 825-833. |
[2] | XIA Yong-kang, GU Ming-yuan, YANG Hong-guan, YU Xin-zhi, LU Bing-an. CVD Preparation and Application of 3D Graphene in Electrochemical Energy Storage [J]. Journal of Electrochemistry, 2019, 25(1): 89-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||