Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (6): 605-613. doi: 10.13208/j.electrochem.210125
Previous Articles Next Articles
Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang*()
Received:
2021-01-25
Revised:
2021-03-01
Online:
2021-12-28
Published:
2021-03-20
Contact:
Xing-De Xiang
E-mail:xiangxingde@nefu.edu.cn
Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang. Functional Sulfate Electrolytes Enable the Enhanced Cycling Stability of NaTi2(PO4)3/C Anode Material for Aqueous Sodium-Ion Batteries[J]. Journal of Electrochemistry, 2021, 27(6): 605-613.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.210125
[1] | Liu SY(刘双), Shao L Y(邵涟漪), Zhang X J(张雪静), Tao Z J(陶占军), Chen J(陈军). Advances in electrode materials for aqueous rechargeable sodium-ion batteries[J]. Acta Phys. Chim. Sin.(物理化学学报), 2018, 34(6): 581-597. |
[2] | Cao Y(曹翊), Wang Y G(王永刚), Wang Q(王青), Zhang Z Y(张兆勇), Che Y(车勇), Xia Y Y(夏永姚), Dai X(戴翔). Development of aqueous sodium ion battery[J]. Energy Storage Sci. Tech.(储能科学与技术), 2016, 5: 317-323. |
[3] |
Guo Z W, Zhao Y, Ding Y X, Dong X L, Chen L, Cao J Y, Wang C C, Xia Y Y, Peng H S, Wang Y G. Multi-functional flexible aqueous sodium-ion batteries with high safety[J]. Chem, 2017, 3(2): 348-362.
doi: 10.1016/j.chempr.2017.05.004 URL |
[4] | Liu Y C(刘永畅), Chen C C(陈程成), Zhang N(张宁), Tao Z L(陶占良), Chen J(陈军). Research and application of key materials for sodium ion batteries[J]. J. Electrochem.(电化学), 2016, 22(5): 437-452. |
[5] |
Zhang F, Li W F, Xiang X D, Sun M L. Highly stable Na-storage performance of Na0.5Mn0.5Ti0.5O2 microrods as cathode for aqueous sodium-ion batteries[J]. J. Electroanal. Chem., 2017, 802: 22-26.
doi: 10.1016/j.jelechem.2017.08.042 URL |
[6] |
Wang Y S, Mu L Q, Liu J, Yang Z Z, Yu X Q, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries[J]. Adv. Energy Mater., 2015, 5(22): 1501005.
doi: 10.1002/aenm.201501005 URL |
[7] |
Zhang X Q, Hou Z G, Li X N, Liang J W, Zhu Y C, Qian Y T. Na birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes[J]. J. Mater. Chem. A, 2016, 4(3): 856-860.
doi: 10.1039/C5TA08857G URL |
[8] | Lin X H(林兴灏), Chi X W(迟晓伟), Liu Y(刘宇), Yang J H(杨建华). Na3+xV2-xMgx(PO4)3 cathode preparation and its application in aqueous sodium-ion batteries[J]. Chin. J. Power Sources(电源技术), 2019, 43: 1821-1824. |
[9] |
Liu S, Wang L B, Liu J, Zhou M, Nian Q S, Feng Y Z, Tao Z L, Shao L Y. Na3V2(PO4)2F3-SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries[J]. J. Mater. Chem. A, 2019, 7(1): 248-256.
doi: 10.1039/C8TA09194C URL |
[10] |
Lei P, Wang Y, Zhang F, Wan X, Xiang X D. Carbon-coated Na2.2V1.2Ti0.8(PO4)3 cathode with excellent cycling performance for aqueous sodium-ion batteries[J]. ChemElectroChem, 2018, 5(17): 2482-2487.
doi: 10.1002/celc.v5.17 URL |
[11] |
Fernadez-Ropero A J, Zarrabeitia M, Reynaud M, Rojo T, Casas-Cabanas M. Toward safe and sustainable batteries: Na4Fe3(PO4)2P2O7 as a low cost cathode for rechargeable aqueous Na-ion batteries[J]. J. Phys. Chem. C, 2018, 122(1): 133-142.
doi: 10.1021/acs.jpcc.7b09803 URL |
[12] |
Li Y(李勇), He W X(何玮鑫), Zheng X Y(郑芯月), Yu S L(于胜兰), Li H T(李海同), Li H Y(黎弘毅), Zhang R(张蓉), Wang Y(王雨). Prussian blue cathode materials for aqueous sodium-ion batteries: Preparation and electrochemical performance[J]. J. Inorg. Mater.(无机材料学报), 2019, 34(4): 365-372.
doi: 10.15541/jim20180272 |
[13] |
Wang W L(王武练), Zhang J(张军), Wang Q S(王秋实), Chen L(陈亮), Wang Z P(王兆平). High-quality Fe4[Fe(CN)6]3 nanocubes: Synjournal and electrochemical performance as cathode material for aqueous sodium-ion battery[J]. J. Inorg. Mater.(无机材料学报), 2019, 34(12): 1301-1308.
doi: 10.15541/jim20190076 |
[14] |
Luo D X, Lei P, Tian G R, Huang Y X, Ren X F, Xiang X D. Insight into electrochemical properties and reaction mechanism of a cobalt-rich Prussian Blue analogue cathode in a NaSO3CF3 electrolyte for aqueous sodium-ion batteries[J]. J. Phys. Chem. C, 2020, 124(11): 5958-5965.
doi: 10.1021/acs.jpcc.9b11758 URL |
[15] |
Cai D P, Yang X H, Qu B H, Wang T H. Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries[J]. Chem. Commun., 2017, 53(50): 6780-6783.
doi: 10.1039/C7CC02516E URL |
[16] |
Zhang Q C, Man P, He B, Li C W, Li Q L, Pan Z H, Wang Z X, Yang J, Wang Z, Zhou Z Y, Lu X H, Niu Z Q, Yao Y G, Wei L. Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries[J]. Nano Energy, 2020, 67: 104212.
doi: 10.1016/j.nanoen.2019.104212 URL |
[17] |
Qiu Y G, Yu Y H, Xu J, Liu Y, Ou M Y, Sun S X, Wei P, Deng Z, Xu Y, Fang C, Li Q, Han J T, Huang Y H. Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries: Na1.5Ti1.5Fe0.5(PO4)3[J]. J. Mater. Chem. A, 2019, 7(43): 24953-24963.
doi: 10.1039/C9TA08829F URL |
[18] |
Lei P, Liu K, Wan X, Luo D X, Xiang X D. Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries[J]. Chem. Commun., 2019, 55(4): 509-512.
doi: 10.1039/C8CC07668E URL |
[19] |
Gu T T, Zhou M, Liu M Y, Wang K L, Cheng S J, Jiang K. A polyimide MWCNTs composite as high capacity anode for aqueous SIBs[J]. RSC Adv., 2016, 6: 53319-53323.
doi: 10.1039/C6RA09075C URL |
[20] |
Deng W W, Shen Y F, Qian J F, Yang H X. A polyimide anode with high capacity and superior cyclability for aqueous Na-ion batteries[J]. Chem. Commun., 2015, 51(24): 5097-5099.
doi: 10.1039/C5CC00073D URL |
[21] |
Wu M G, Ni W, Hu J, Ma J M. NASICON-structured NaTi2(PO4)3 for sustainable energy storage[J]. Nano-Micro Lett., 2019, 11(1): 44.
doi: 10.1007/s40820-019-0273-1 URL |
[22] |
Zheng W T, Lei P, Luo D X, Huang Y X, Tian G R, Xiang X D. Understanding the effect of structural compositions on electrochemical properties of titanium-based polyanionic compounds for superior sodium storage[J]. Solid State Ionics, 2020, 345: 115194.
doi: 10.1016/j.ssi.2019.115194 URL |
[23] |
Malchik F, Shpigel N, Levi M D, Penki T R, Gavriel B, Bergman G, Turgeman M, Aurbach D, Gogotsi Y. MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte[J]. Nano Energy, 2021, 79: 105433.
doi: 10.1016/j.nanoen.2020.105433 URL |
[24] |
Mohamed A I, Whitacre J F. Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: Relating pH increases to long term stability[J]. Electrochim. Acta, 2017, 235: 730-739.
doi: 10.1016/j.electacta.2017.03.106 URL |
[25] |
Zhan X W, Shirpour M. Evolution of solid/aqueous interface in aqueous sodium-ion batteries[J]. Chem. Commun., 2017, 53(1): 204-207.
doi: 10.1039/C6CC08901A URL |
[26] |
Luo D X, Lei P, Huang Y X, Tian G R, Xiang X D. Improved electrochemical performance of graphene-integrated NaTi2(PO4)3/C anode in high-concentration electrolyte for aqueous sodium-ion batteries[J]. J. Electroanal. Chem., 2019, 838: 66-72.
doi: 10.1016/j.jelechem.2019.02.057 URL |
[27] |
Lei P, Li S J, Luo D X, Huang Y X, Tian G R, Xiang X D. Fabricating a carbon-encapsulated NaTi2(PO4)3 framework as a robust anode material for aqueous sodium-ion batteries[J]. J. Electroanal. Chem., 2019, 847: 113180.
doi: 10.1016/j.jelechem.2019.05.062 URL |
[28] |
Li X N, Zhu X B, Liang J W, Hou Z G, Wang Y, Lin N, Zhu Y C, Qian Y T. Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries[J]. J. Electrochem. Soc., 2014, 161(6): A1181-A1187.
doi: 10.1149/2.0081409jes URL |
[29] |
Zhang F, Li W F, Xiang X D, Sun M L. Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries[J]. Chem. Eur. J., 2017, 23(52): 12944-12948.
doi: 10.1002/chem.v23.52 URL |
[30] |
Gao H C, Goodenough J B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3[J]. Angew. Chem. Int. Ed., 2016, 55(41): 12768-12772.
doi: 10.1002/anie.201606508 URL |
[31] |
Wang H B, Zhang T R, Chen C, Ling M, Lin Z, Zhang S Q, Pan F, Liang C D. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3[J]. Nano Res., 2017, 11(1): 490-498.
doi: 10.1007/s12274-017-1657-5 URL |
[32] |
Suo L M, Borodin O, Wang Y S, Rong X H, Sun W, Fan X L, Xu S Y, Schroeder M A, Cresce A V, Wang F, Yang C Y, Hu Y S, Xu K, Wang C S. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Adv. Energy Mater., 2017, 7(21): 1701189.
doi: 10.1002/aenm.v7.21 URL |
[33] |
Zhang H, Jeong S, Qin B, Carvalho D V, Buchholz D, Passerini S. Towards high-performance aqueous sodium-ion batteries: Stabilizing the solid/liquid interface for NASICON-type Na2VTi(PO4)3 using concentrated electro-lytes[J]. ChemSusChem, 2018, 11(8): 1382-1389.
doi: 10.1002/cssc.v11.8 URL |
[34] |
Kuhnel R S, Reber D, Battaglia C. A high-voltage aqueous electrolyte for sodium-ion batteries[J]. ACS Energy Lett., 2017, 2(9): 2005-2006.
doi: 10.1021/acsenergylett.7b00623 URL |
[35] |
Mao W T, Zhang S J, Cao F P, Pan J L, Ding Y M, Ma C, Li M L, Hou Z G, Bao K Y T, Qian Y T. Synjournal of NaTi2(PO4)3@C microspheres by an in situ process and their electrochemical properties[J]. J. Alloys Compd., 2020, 842: 155300.
doi: 10.1016/j.jallcom.2020.155300 URL |
[36] |
Zhao Y Y, Wei Z X, Pang Q, Wei Y J, Cai Y M, Fu Q, Du F, Sarapulova A, Ehrenberg H, Liu B B, Chen G. NASICON-type Mg0.5Ti2(PO4)3 negative electrode material exhibits different electrochemical energy storage mechanisms in Na-ion and Li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(5): 4709-4718.
doi: 10.1021/acsami.6b14196 URL |
[1] | Xia-Min Huang, Li-Hong Zhang, Shun-Qing Wu, Yong Yang, Zi-Zhong Zhu. Structural, Dynamic, Elastic and Electronic Properties of ANiN (A = Li, Na, Mg, Ca): First-Principles Calculations [J]. Journal of Electrochemistry, 2021, 27(3): 339-350. |
[2] | Zhen-Lang Liang, Yao Yang, Hao Li, Li-Ying Liu, Zhi-Cong Shi. Lithium Storage Performance of Hard Carbons Anode Materials Prepared by Different Precursors [J]. Journal of Electrochemistry, 2021, 27(2): 177-184. |
[3] | DUAN Ming-tao, MENG Yan-shuang, ZHANG Hong-shuai. Preparations and Sodium Storage Properties of Ni3S2@CNT Composite [J]. Journal of Electrochemistry, 2020, 26(6): 850-858. |
[4] | CHEN Jia-hui, ZHONG Xiao-bin, HE Chao, WANG Xiao-xiao, XU Qing-chi, LI Jian-feng. Synthesis and Raman Study of Hollow Core-Shell Ni1.2Co0.8P@N-C as an Anode Material for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(3): 328-337. |
[5] | WANG Fan-fan, LIU Xiao-bin, CHEN Long, CHEN Cheng-cheng, LIU Yong-chang, FAN Li-zhen. Recent Progress in Key Materials for Room-Temperature Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 55-76. |
[6] | YAN Chong, KOU Hua-ri, YAN Bo, LIU Xiao-jing, LI De-jun, LI Xi-fei. Ni/Mn3O4/NiMn2O4 Double-Shelled Hollow Spheres Embedded into Reduced Graphene Oxide as Advanced Anodes for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 112-121. |
[7] | GAO Tian-yi, GONG Zheng-liang. Preparations and Electrochemical Performances of Carbon Coated Silicon/Graphite Composites [J]. Journal of Electrochemistry, 2018, 24(3): 253-261. |
[8] | WANG You, ZENG Yi-wen, ZHONG Xing, LIU Xing, TANG Quan. Synthesis and Electrochemical Properties of Li3V2(BO3)3/C Anode Materials for Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2018, 24(2): 174-181. |
[9] | LI Quan-yi, YANG Qi, ZHAO Yan-hong. Electrochemical Performance of MoO2-C Composite Coatings [J]. Journal of Electrochemistry, 2018, 24(2): 160-165. |
[10] | YUAN Shuang, ZHU Yun-hai, WANG Sai, SUN Tao, ZHANG Xin-bo, WANG Qiang. Micro/Nano-Structured Electrode Materials for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2016, 22(5): 464-476. |
[11] | YANG Ya-xiong, MA Rui-jun, GAO Ming-xia, PAN Hong-ge, LIU Yong-feng. Electrochemical Performance of Crystalline Li12Si7 as Anode Material for Lithium Ion Battery [J]. Journal of Electrochemistry, 2016, 22(5): 521-527. |
[12] | LIU Yong-chang, CHEN Cheng-cheng, ZHANG Ning, WANG Liu-bin, Xiang Xing-de, CHEN Jun. Research and Application of Key Materials for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2016, 22(5): 437-452. |
[13] | ZHANG Jing-fei, LU Jing, YANG Xiao-yu, HUANG Yun-di, XU Lin, SUN Dong-mei*, TANG Ya-wen. Synthesis of Porous Carbon Nanosheets and Its Application in Sodium-Ion Battery [J]. Journal of Electrochemistry, 2015, 21(6): 548-553. |
[14] | YANG Shan-shan, ZHANG Qian, LIN Xiong-gui, ZHENG Ming-sen, DONG Quan-feng*. Synthesis and Electrochemical Performance of Mn3O4/Graphene Composites [J]. Journal of Electrochemistry, 2015, 21(4): 326-331. |
[15] | ZHANG Yong-long, HU Xue-bu*, WANG Yao-qiong, HUANG Dong-hai. Syntheses and Electrochemical Performances of Li4Ti5O12 Anode Materials for Lithium Ion Battery [J]. Journal of Electrochemistry, 2015, 21(2): 181-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||