Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (2): 157-167. doi: 10.13208/j.electrochem.201251
Special Issue: “电分析”专题文章; “电催化和燃料电池”专题文章
• ARTICLE • Previous Articles Next Articles
Xiang Qin, Zhong-Qiu Li, Jian-Bin Pan, Jian Li, Kang Wang, Xing-Hua Xia*()
Received:
2021-02-14
Revised:
2021-03-24
Online:
2021-04-28
Published:
2021-03-27
Contact:
Xing-Hua Xia
E-mail:xhxia@nju.edu.cn
Xiang Qin, Zhong-Qiu Li, Jian-Bin Pan, Jian Li, Kang Wang, Xing-Hua Xia. Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array[J]. Journal of Electrochemistry, 2021, 27(2): 157-167.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.201251
[1] |
Tao B L, Yule L C, Daviddi E, Bentley C L, Unwin P R. Correlative electrochemical microscopy of Li-ion (De)intercalation at a series of individual LiMn2O4 particles[J]. Angew. Chem. Int. Ed., 2019,58(14):4606-4611.
doi: 10.1002/anie.v58.14 URL |
[2] |
Sharel P E, Kang M, Wilson P, Meng L C, Perry D, Basile A, Unwin P R. High resolution visualization of the redox activity of Li2O2 in non-aqueous media: conformal layer vs. toroid structure[J]. Chem. Commun., 2018,54(24):3053-3056.
doi: 10.1039/C7CC09957F URL |
[3] |
Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K, Ino K, Shiku H, Unwin P R, Korchev Y E, Kanamura K, Matsue T. Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nat. Commun., 2014,5:5450.
doi: 10.1038/ncomms6450 pmid: 25399818 |
[4] |
Jiang D, Jiang Y Y, Li Z M, Liu T, Wo X, Fang Y M, Tao N J, Wang W, Chen H Y. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. J. Am. Chem. Soc., 2016,139(1):186-192.
doi: 10.1021/jacs.6b08923 URL |
[5] |
Bucher E S, Wightman R M. Electrochemical analysis of neurotransmitters[J]. Annu. Rev. Anal. Chem., 2015,8:239-261.
doi: 10.1146/annurev-anchem-071114-040426 URL |
[6] |
Zhang J J, Zhou J Y, Pan R R, Jiang D C, Burgess J D, Chen H Y. New frontiers and challenges for single-cell electrochemical analysis[J]. ACS. Sens., 2018,3(2):242-250.
doi: 10.1021/acssensors.7b00711 URL |
[7] |
Lin T E, Rapino S, Girault H H, Lesch A. Electrochemical imaging of cells and tissues[J]. Chem. Sci., 2018,9(20):4546-4554.
doi: 10.1039/C8SC01035H URL |
[8] |
Bentley C L, Kang M, Unwin P R. Nanoscale surface structure-activity in electrochemistry and electrocatalysis[J]. J. Am. Chem. Soc., 2019,141(6):2179-2193.
doi: 10.1021/jacs.8b09828 URL |
[9] |
Bentley C L, Kang M, Unwin P R. Nanoscale structure dynamics within electrocatalytic materials[J]. J. Am. Chem. Soc., 2017,139(46):16813-16821.
doi: 10.1021/jacs.7b09355 URL |
[10] | Kim J, Renault C, Nioradze N, Arroyo-Curras N, Leonard K C, Bard A J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. J. Am. Chem. Soc., 2016,13(27):8560-8568. |
[11] |
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016,116(22):13234-13278.
doi: 10.1021/acs.chemrev.6b00067 URL |
[12] |
Kai T, Zoski C G, Bard A J. Scanning electrochemical microscopy at the nanometer level[J]. Chem. Commun., 2018,54(16):1934-1947.
doi: 10.1039/C7CC09777H URL |
[13] |
Kang M, Perry D, Bentley C L, West G, Page A, Unwin P R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles[J]. ACS Nano, 2017,11(9):9525-9535.
doi: 10.1021/acsnano.7b05435 URL |
[14] |
Daviddi E, Gonos K L, Colburn A W, Bentley C L, Unwin P R. Scanning electrochemical cell microscopy (SECCM) chronopotentiometry: Development and applications in electroanalysis and electrocatalysis[J]. Anal. Chem., 2019,91(14):9229-9237.
doi: 10.1021/acs.analchem.9b02091 |
[15] |
Audebert P, Miomandre F. Electrofluorochromism: from molecular systems to set-up and display[J]. Chem. Sci., 2013,4(2):575-584.
doi: 10.1039/C2SC21503A URL |
[16] |
Sambur J B, Chen T Y, Choudhary E, Chen G, Nissen E J, Thomas E M, Zou N, Chen P. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes[J]. Nature, 2016,530(7588):77-80.
doi: 10.1038/nature16534 URL |
[17] | Bouffier L, Doneux T. Coupling electrochemistry with in situ fluorescence (confocal) microscopy[J]. Curr. Opin. Electrochem., 2017,6(1):31-37. |
[18] |
Zhu M J, Pan J B, Wu Z Q, Gao X Y, Zhao W, Xia X H, Xu J J, Chen H Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nano-particle[J]. Angew. Chem. Int. Ed., 2018,57(15):4010-4014.
doi: 10.1002/anie.201800706 URL |
[19] |
Valenti G, Scarabino S, Goudeau B, Lesch A, Jovic M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis[J]. J. Am. Chem. Soc., 2017,139(46):16830-16837.
doi: 10.1021/jacs.7b09260 URL |
[20] |
Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-confined electrochemiluminescence microscopy of cell membranes[J]. J. Am. Chem. Soc., 2018,140(44):14753-14760.
doi: 10.1021/jacs.8b08080 URL |
[21] |
Zhou J Y, Ma G Z, Chen Y, Fang D J, Jiang D C, Chen H Y. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol[J]. Anal. Chem., 2015,87(16):8138-8143.
doi: 10.1021/acs.analchem.5b00542 URL |
[22] |
Guerrette J P, Percival S J, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity[J]. J. Am. Chem. Soc., 2013,135(2):855-861.
doi: 10.1021/ja310401b URL |
[23] |
Anderson T J, Defnet P A, Zhang B. Electrochemiluminescence (ECL) - based electrochemical imaging using a massive array of bipolar ultramicroelectrodes[J]. Anal. Chem., 2020,92(9):6748-6755.
doi: 10.1021/acs.analchem.0c00921 URL |
[24] |
Iwama T, Inoue K Y, Abe H, Matsue T. Chemical imaging using a closed bipolar electrode array[J]. Chem. Lett., 2018,47(7):843-845.
doi: 10.1246/cl.180303 URL |
[25] |
Iwama T, Inoue K Y, Abe H, Matsue T, Shiku H. Bioimaging using bipolar electrochemical microscopy with improved spatial resolution[J]. Analyst, 2020,145(21):6895-6900.
doi: 10.1039/D0AN00912A URL |
[26] |
Qin X, Li Z Q, Zhou Y, Pan J B, Li J, Wang K, Xu J J, Xia X H. Fabrication of high-density and superuniform gold nanoelectrode arrays for electrochemical fluorescence imaging[J]. Anal. Chem., 2020,92(19):13493-13499.
doi: 10.1021/acs.analchem.0c02918 URL |
[27] |
Hurst S J, Payne E K, Qin L, Mirkin C A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angew. Chem. Int. Ed., 2006,45(17):2672-2692.
doi: 10.1002/(ISSN)1521-3773 URL |
[28] |
Peinetti A S, Gilardoni R S, Mizrahi M, Requejo F G, Gonzalez G A, Battaglini F. Numerical simulation of the diffusion processes in nanoelectrode arrays using an axial neighbor symmetry approximation[J]. Anal. Chem., 2016,88(11):5752-5759.
doi: 10.1021/acs.analchem.6b00039 URL |
[29] |
Zu Y, Bard A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium Tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity[J]. Anal. Chem., 2000,72(14):3223-3232.
doi: 10.1021/ac000199y URL |
[30] |
Pan S, Liu J, Hill C M. Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy[J]. J. Phys. Chem. C, 2015,119(48):27095-27103.
doi: 10.1021/acs.jpcc.5b06829 URL |
[31] |
Wilson A J, Marchuk K, Willets K A. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes[J]. Nano. Lett., 2015,15(9):6110-6115.
doi: 10.1021/acs.nanolett.5b02383 URL |
[32] |
Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential role of electrode materials in electrochemiluminescence applications[J]. ChemElectroChem, 2016,3(12):1990-1997.
doi: 10.1002/celc.v3.12 URL |
[33] |
Li F, Zu Y. Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2'-bipy-ridine)ruthenium(II)/Tri-n-propylamine system: lower oxidation potential and higher emission intensity[J]. Anal. Chem., 2004,76(6):1768-1772.
doi: 10.1021/ac035181c URL |
[34] |
Yin H J, Zhao S L, Zhao K, Muqsit A, Tang H J, Chang L, Zhao H J, Gao Y, Tang Z Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity[J]. Nat. Commun., 2015,6:6430.
doi: 10.1038/ncomms7430 URL |
[35] |
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016,7:13638.
doi: 10.1038/ncomms13638 URL |
[36] |
Liu S F, Zhang X, Yu Y M, Zou G Z. A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters[J]. Anal. Chem., 2014,86(5):2784-2788.
doi: 10.1021/ac500046s URL |
[37] |
Wei H, Wang E K. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium[J]. TRAC-Trend Anal. Chem., 2008,27(5):447-459.
doi: 10.1016/j.trac.2008.02.009 URL |
[1] | Ao Zhou, Wei-Jian Guo, Yue-Qing Wang, Jin-Tao Zhang. The Rapid Preparation of Efficient MoFeCo-Based Bifunctional Electrocatalysts via Joule Heating for Overall Water Splitting [J]. Journal of Electrochemistry, 2022, 28(9): 2214007-. |
[2] | Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li. Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production [J]. Journal of Electrochemistry, 2022, 28(10): 2214012-. |
[3] | Xue Sun, Ya-Jie Song, Ren-Long Li, Jia-Jun Wang. Catalytic Effect of Disordered Ru-O Configurations for Electrochemical Hydrogen Evolution [J]. Journal of Electrochemistry, 2022, 28(10): 2214011-. |
[4] | Li-Li Xu, Dong-Yan Ren, Xiao-Feng Zhao, Yong Yi. Janus-TiNbCO2 for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity [J]. Journal of Electrochemistry, 2021, 27(5): 570-578. |
[5] | Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao. Theoretical Studies of Metal-N-C for Oxygen Reduction and Hydrogen Evolution Reactions in Acid and Alkaline Solutions [J]. Journal of Electrochemistry, 2021, 27(2): 185-194. |
[6] | WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang. Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2020, 26(6): 815-824. |
[7] | LU Hang-shuo, HE Xiao-bo, YIN Feng-xiang, LI Guo-ru. Preparations of Nickel-Iron Hydroxide/Sulfide and Their Electrocatalytic Performances for Overall Water Splitting [J]. Journal of Electrochemistry, 2020, 26(1): 136-147. |
[8] | CHEN Dan-dan, GAO Xue-qing, LIU Hong-fei, ZHANG Wei, CAO Rui. Nickel Selenide Derived from [Ni(en)3](SeO3) Complex for Efficient Electrocatalytic Overall Water Splitting [J]. Journal of Electrochemistry, 2019, 25(5): 553-561. |
[9] | YIN Can, FU Wei-wei, FANG Ling, YOU Shi-li, ZHANG Hui-juan, WANG Yu. Three-Dimensional Porous VN Octahedron Catalyst with High Electrocatalytic Efficiency toward Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2019, 25(5): 579-588. |
[10] | JIANG Peng-jie, LV Yi, CHEN Chang-miao, HE Hong-cheng, CAI Yong, ZHANG Ming. A Facile Route to Synthesize Pt-WO3 Nanosheets with Enhanced Electrochemical Performance for HER [J]. Journal of Electrochemistry, 2019, 25(5): 562-570. |
[11] | LI Zhong-qiu, WU Zeng-qiang, XIA Xing-hua. Recent Advances in Nanofluidic Electrochemistry for Biochemical Analysis [J]. Journal of Electrochemistry, 2019, 25(3): 291-301. |
[12] | GAO Yu, ZHOU Juan, LIU Yu-wen, CHEN Sheng-li. Hydrogen Evolution Properties on Individual MoS2 Nanosheets [J]. Journal of Electrochemistry, 2016, 22(6): 590-595. |
[13] | WU Ze-xing, Wang Jie, Guo Jun-po, Zhu Jing, Wang De-li. Recent Progresses in Molybdenum-Based Electrocatalysts for the Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2016, 22(2): 192-204. |
[14] | WU Mei-sheng, XU Jing-juan*, CHEN Hong-yuan. Electrochemiluminescence Assay Based on Bipolar Electrode for Bioanalysis [J]. Journal of Electrochemistry, 2015, 21(1): 1-7. |
[15] | ZHOU Zhen-yu, XU Lin-ru, SU Bin*. Electrochemiluminescence Imaging Focusing: Array Analysis and Visualization of Latent Fingerprints [J]. Journal of Electrochemistry, 2014, 20(6): 506-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||