Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (5): 467-497. doi: 10.13208/j.electrochem.201126
Special Issue: “表界面分析”专题文章; “电化学研究方法”专题文章
• Review & Article • Previous Articles Next Articles
Xiang Li1, Qiu-An Huang1,2,*(), Wei-Heng Li2, Yu-Xuan Bai1,2, Jia Wang1,2, Yang Liu2, Yu-Feng Zhao2, Juan Wang1,*(
), Jiu-Jun Zhang2,*(
)
Received:
2020-11-26
Revised:
2020-12-25
Online:
2021-10-28
Published:
2021-02-09
Contact:
Qiu-An Huang,Juan Wang,Jiu-Jun Zhang
E-mail:hqahqahqa@163.com;juanwang168@gmail.com;jiujun.zhang@i.shu.edu.cn
Xiang Li, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jia Wang, Yang Liu, Yu-Feng Zhao, Juan Wang, Jiu-Jun Zhang. Fundamentals of Electrochemical Impedance Spectroscopy for Macrohomogeneous Porous Electrodes[J]. Journal of Electrochemistry, 2021, 27(5): 467-497.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.201126
Figure 1
(A) Schematic diagram of porous electrode; (B) Transmission line model for porous electrode. Herein, d is electrode thickness, x and t represent the location variable and time variable, respectively, ϕ1 (x,t) and ϕ2(x,t) represent the potentials of electrode matrix and electrolyte in pore, respectively. (color on line)
Table 1
Default parameter values for simulating EIS of porous electrodes
Parameter | Default | References |
---|---|---|
Electrode thickness (d) | 90 μm | [ |
Unit area interface capacitance (C) | 3×10-5 F·cm-2 | [ |
Diffusion coefficient (D) | 1×10-13 cm2·s-1 | [ |
Characteristic hole depth (Lp) | 90 nm | [ |
Unit volume surface area (Sc) | 2×104 cm-1 | [ |
Rate constant (k) | 1×10-7 cm·s-1 | [ |
Electronic conductivity (σ1 ) | 5×10-1 S·cm-1 | [ |
Electrolyte ionic conductivity (σ2) | 5×10-3 S·cm-1 | [ |
Interface charge transfer conductivity (gct) | 7.6 S·cm-1 | [ |
Figure 2
Evolution trend of porous electrode impedance with respect to σ1. Nyquist diagrams of (A) Z′-Z″ and (B) the enlarged views; Bode diagrams of (C) amplitude-frequency characteristic and (D) phase-frequency characteristic θ-f. The conductivity reference value σ0 = 5×10-3 S·cm-1,and σ2 = σ0. See Table 1 for other parameters. The corresponding characteristic frequencies ω0, ω1, ω2 and ω3 are marked with □、○、△和×, respectively. (color on line)
Table 2
EIS characteristics of porous electrode with respect to σ1
σ1(S·cm-1) | 1σ0 | 10σ0 | 100σ0 |
---|---|---|---|
K(cm2·s-1) | 0.0042 | 0.0076 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 9×107 | 1×108 |
ω0(rad·s-1) | 22 | 22 | 22 |
ω1(rad·s-1) | 51 | 94 | 102 |
ω2(rad·s-1) | 0.1 | 0.1 | 0.1 |
ω3(rad·s-1) | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.195 | 0.195 | 0.195 |
fk2(Hz) | 0.001 | 0.001 | 0.001 |
Figure 3
Under a given σ1, the evolution trend of the porous electrode impedance with respect to gct. At σ1 = 1σ0, (A) Nyquist view and (B) Nyquist enlarged view; at σ1 = 10σ0, (C) Nyquist view and (D) Nyquist enlarged view; at σ1 = 100σ0, (E) Nyquist view and (F) Nyquist enlarged view; when σ1 = 1σ0,10σ0,100σ0, (G) |Z|-f diagrams and (H) θ-f diagrams. (clolor on line)
Figure 4
Under a given gct, the evolution trend of the porous electrode impedance with respect to σ1. At gct = 1g0, (A) Nyquist view and (B) Nyquist enlarged view; at gct = 2g0, (C) Nyquist view and (D) Nyquist enlarged view; at gct = 10g0, (E) Nyquist view and (F) Nyquist enlarged view; when gct = 1g0,2g0,10g0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Table 3
EIS characteristics of porous electrodes with respect to σ1 and gct
gct (S·cm-1) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1g0 | 2g0 | 10g0 | 1g0 | 2g0 | 10g0 | 1g0 | 2g0 | 10g0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 11 | 22 | 111 | 11 | 22 | 111 | 11 | 22 | 111 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.119 | 0.195 | 0.557 | 0.119 | 0.195 | 0.557 | 0.119 | 0.195 | 0.557 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Figure 5
Under a given σ1, the evolution trend of the porous electrode impedance with respect to C. At σ1 = 1σ0, (A) Nyquist view and (B) Nyquist enlarged view; at σ1 = 10σ0, (C) Nyquist view and (D) Nyquist enlarged view; at σ1 = 100σ0, (E) Nyquist view and (F) Nyquist enlarged view; when σ1 = 1σ0,10σ0,100σ0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Figure 6
Under a given C, the evolution trend of the porous electrode impedance with respect to σ1. At C = 1C0 (A) Nyquist view and (B) Nyquist enlarged view; at C = 6C0 , (C) Nyquist view and (D) Nyquist enlarged view; at C = 36C0 , (E) Nyquist view and (F) Nyquist enlarged view; when C = 1C0,6C0,36C0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Table 4
EIS characteristics of porous electrode with respect to σ1 and C
C(F·cm-2) | σ1=1σ0 | σ1=10σ0 | σ1=100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1C0 | 6C0 | 36C0 | 1C0 | 6C0 | 36C0 | 1C0 | 6C0 | 36C0 | |
K(cm2·s-1) | 0.025 | 0.0042 | 0.0007 | 0.045 | 0.0076 | 0.0013 | 0.05 | 0.0083 | 0.0014 |
ωmax(rad·s-1) | 3×108 | 5×107 | 8×106 | 5.6×108 | 9×107 | 1.5×107 | 6×108 | 1×108 | 1.7×107 |
ω0 (rad·s-1) | 133 | 22 | 4 | 133 | 22 | 4 | 133 | 22 | 4 |
ω1 (rad·s-1) | 309 | 51 | 9 | 561 | 94 | 16 | 611 | 102 | 17 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.59 | 0.195 | 0.05 | 0.59 | 0.195 | 0.05 | 0.59 | 0.195 | 0.05 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Figure 7
Under a given σ1, the evolution trend of the porous electrode impedance with respect to D. At σ1 = 1σ1, (A) Nyquist view and (B) Nyquist enlarged view; at σ1 = 10σ1, (C) Nyquist view and (D) Nyquist enlarged view; at σ1 = 100σ1, (E) Nyquist view and (F) Nyquist enlarged view; when σ1 = 1σ1,10σ0,σ0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Figure 8
Under a given D, the evolution trend of the porous electrode impedance with respect to σ1. At D = 1D0, (A) Nyquist view and (B) Nyquist enlarged view; at D = 10D0, (C) Nyquist view and (D) Nyquist enlarged view; at D = 100D0, (E) Nyquist view and (F) Nyquist enlarged view; when D = 1D0,10D0,100D0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Table 5
EIS characteristics of porous electrode with respect to σ1 and D
D(cm2·s-1) | σ1=1σ0 | σ1=10σ0 | σ1=100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1D0 | 10D0 | 100D0 | 1D0 | 10D0 | 100D0 | 1D0 | 10D0 | 100D0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.1 | 0.01 | 0.001 | 0.1 | 0.01 | 0.001 | 0.1 | 0.01 | 0.001 |
ω3 (rad·s-1) | 0.0012 | 0.012 | 0.12 | 0.0012 | 0.012 | 0.12 | 0.0012 | 0.012 | 0.12 |
fk1(Hz) | 0.195 | 0.087 | 0.054 | 0.195 | 0.087 | 0.054 | 0.195 | 0.087 | 0.054 |
fk2(Hz) | 0.001 | 0.011 | —— | 0.001 | 0.011 | —— | 0.001 | 0.011 | —— |
Figure 9
Under a given σ1, the evolution trend of the porous electrode impedance with respect to k. At σ1 = 1σ0, (A) Nyquist view and (B) Nyquist enlarged view; at σ1 = 10σ0, (C) Nyquist view and (D) Nyquist enlarged view; at σ1 = 100σ0, (E) Nyquist view and (F) Nyquist enlarged view; when σ1 = 1σ0,10σ0,100σ0,, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Figure 10
Under a given k, the evolution trend of the porous electrode impedance with respect to σ1. At k = 1k0 (A) Nyquist view and (B) Nyquist enlarged view; at k = 10k0, (C) Nyquist view and (D)Nyquist enlarged view; at k = 100k0, (E) Nyquist view and (F) Nyquist enlarged view;when k=1k0,10k0,100k0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Table 6
EIS characteristics of porous electrode with respect to σ1 and k
k(cm·s-1) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1k0 | 10k0 | 100k0 | 1k0 | 10k0 | 100k0 | 1k0 | 10k0 | 100k0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.001 | 0.1 | 10 | 0.001 | 0.1 | 10 | 0.001 | 0.1 | 10 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.0445 | 0.195 | - | 0.0445 | 0.195 | - | 0.0445 | 0.195 | - |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Figure 11
Under a given σ1, the evolution trend of the porous electrode impedance with d. At σ1 = 1σ0 (A) Nyquist global view and (B) Nyquist enlarged view; at σ1 = 10σ0 (C) Nyquist global view and (D) Nyquist enlarged view; at σ1 = 100σ0 (E) Nyquist global view and (F) Nyquist enlarged view; when σ1 = 1σ0,10σ0,100σ0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Figure 12
Under a given d, the evolution trend of the porous electrode impedance with respect to σ1. At d = 1d0, (A) Nyquist view and (B) Nyquist enlarged view; at d = 3d0, (C) Nyquist view and (D) Nyquist enlarged view; at d = 9d0, (E) Nyquist view and (F) Nyquist enlarged view; when d = 1d0,3d0,9d0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Table 7
EIS characteristics of porous electrode with respect to σ1 and d
d(μm) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1d0 | 3d0 | 9d0 | 1d0 | 3d0 | 9d0 | 1d0 | 3d0 | 9d0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 463 | 51 | 6 | 842 | 94 | 10 | 917 | 102 | 11 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Figure 13
Under a given σ1, the evolution trend of the porous electrode impedance with respect to Lp. At σ1 = 1σ0, (A) Nyquist view and (B) Nyquist enlarged view; at σ1 = 10σ0, (C) Nyquist view and (D) Nyquist enlarged view; at σ1 = 100σ0, (E) Nyquist view and (F) Nyquist enlarged view, when σ1 = 1σ0,10σ0,100σ0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Figure 14
Under a given Lp, the evolution trend of the porous electrode impedance with respect to σ1. At Lp = 1L0, (A) Nyquist view and (B) Nyquist enlarged view; at Lp = 3L0, (C) Nyquist view and (D) Nyquist enlarged view; at Lp = 9L0, (E) Nyquist view and (F) Nyquist enlarged view; when Lp = 1L0,3L0,9L0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Table 8
EIS characteristics of porous electrode with respect to σ1 and Lp
Lp (nm) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1L0 | 3L0 | 9L0 | 1L0 | 3L0 | 9L0 | 1L0 | 3L0 | 9L0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 4.6×108 | 5×107 | 5.7×106 | 8×108 | 9×107 | 1×107 | 9×108 | 1×108 | 1.1×107 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.011 | 0.0012 | 0.00014 | 0.011 | 0.0012 | 0.00014 | 0.011 | 0.0012 | 0.00014 |
fk1(Hz) | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 |
fk2(Hz) | 0.0085 | 0.001 | 0.00014 | 0.0085 | 0.001 | 0.00014 | 0.0085 | 0.001 | 0.00014 |
Figure 15
Under a given σ1, the evolution trend of the porous electrode impedance with respect to Sc. At σ1 = 1σ0, (A) Nyquist view and (B) Nyquist enlarged view; at σ1 = 10σ0, (C) Nyquist view and (D) Nyquist enlarged view; at σ1 = 100σ0, (E) Nyquist view and (F) Nyquist enlarged view; when σ1 = 1σ0,10σ0,100σ0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Figure 16
Under a given Sc, the evolution trend of the porous electrode impedance with respect to σ1. At Sc = 1S0, (A) Nyquist view and (B) Nyquist enlarged view; at Sc = 3S0, (C) Nyquist view and (D) Nyquist enlarged view; at Sc = 9S0, (E) Nyquist view and (F) Nyquist enlarged view; when Sc = 1S0,3S0,9S0, (G) |Z|-f diagrams and (H) θ-f diagrams. (color on line)
Table 9
EIS characteristics of porous electrode with respect to σ1 and Sc
Sc (cm-1) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1S0 | 3S0 | 9S0 | 1S0 | 3S0 | 9S0 | 1S0 | 3S0 | 9S0 | |
K(cm2·s-1) | 0.0119 | 0.0042 | 0.0014 | 0.02 | 0.0076 | 0.0025 | 0.024 | 0.0083 | 0.0028 |
ωmax(rad·s-1) | 1×108 | 5×107 | 1.7×107 | 2.7×108 | 9×107 | 3×107 | 2.9×108 | 1×108 | 3.4×107 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 147 | 51 | 17 | 267 | 94 | 31 | 291 | 102 | 34 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Table 10
Effects of input parameters on characteristic parameters of EIS response for porous electrode characteristic parameter
characteristic parameter | K(cm2·s-1) | ωmax(rad·s-1) | ω0(rad·s-1) | ω1(rad·s-1) | ω2(rad·s-1) | ω3(rad·s-1) | fk1(Hz) | fk2(Hz) |
---|---|---|---|---|---|---|---|---|
σ1 (S·cm-1) | √ | √ | × | √ | × | × | × | × |
gct (S·cm-1) | × | × | √ | × | × | × | √ | × |
C(F·cm-2) | √ | √ | √ | √ | × | × | √ | × |
D(cm2·s-1) | × | × | × | × | √ | √ | √ | √ |
k(cm2·s-1) | × | × | × | × | √ | × | √ | × |
d (μm) | × | × | × | √ | × | × | × | × |
Lp (nm) | × | √ | × | × | × | √ | × | √ |
Sc (cm-1) | √ | √ | × | √ | × | × | × | × |
Table 12
Summary of diverging frequencies of fZX for EIS of porous electrodes
gct | C | D | k | d | Lp | Sc | fgσ | fCσ | fDσ | fkσ | fdσ | fLσ | fSσ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1g0 | 1C0 | 1D0 | 1k0 | 1d0 | 1L0 | 1S0 | 1.4Hz | 15.5Hz | 1.4Hz | 1.4Hz | 6.5Hz | 1.4Hz | 1.4Hz |
2g0 | 6C0 | 10D0 | 10k0 | 3d0 | 3L0 | 3S0 | 1.4Hz | 1.4Hz | 1.4Hz | 1.4Hz | 1.4Hz | 1.4Hz | 1.4Hz |
10g0 | 36C0 | 100D0 | 100k0 | 9d0 | 9L0 | 9S0 | - | 0.3Hz | 1.4Hz | 1.4Hz | - | 1.4Hz | - |
[1] |
Newman J, Tiedemann W. Porous-electrode theory with battery applications[J]. AICHE J., 1975, 21(1): 25-41.
doi: 10.1002/(ISSN)1547-5905 URL |
[2] |
Wang Y, Fu X W, Zheng M, Zhong W H, Cao G Z. Strategies for building robust traffic networks in advanced energy storage devices: a focus on composite electrodes[J]. Adv. Mater., 2019, 31(6): 1804204.
doi: 10.1002/adma.v31.6 URL |
[3] |
Panabiere E, Badot J C, Dubrunfaut O, Etiemble A, Lestriez Bernard. Electronic and ionic dynamics coupled at solid-liquid electrolyte interfaces in porous nanocomposites of carbon black, poly(vinylidene fluoride), and γ-alumina[J]. J. Phys. Chem. C, 2017, 121(15): 8364-8377.
doi: 10.1021/acs.jpcc.6b12204 URL |
[4] |
Javier A E, Patel S N, Hallinan D T, Srinivasan V, Balsara N P. Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes[J]. Angew. Chem. Int. Ed., 2011, 50(42): 9848-9851.
doi: 10.1002/anie.v50.42 URL |
[5] |
Macdonald J R, Barsoukov E. Impedance spectroscopy: theory, experiment, and applications[J]. History, 2005, 1(8): 1-13.
doi: 10.1111/hist.1916.1.issue-1 URL |
[6] | Zhuang Q C, Yang Z, Zhang L, Cui Y H. Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem., 2020, 32(6): 761-791. |
[7] |
Huang Q A, Hui R S, Wang B W, Zhang J J. A review of AC impedance modeling and validation in SOFC diagnosis[J]. Electrochim. Acta, 2007, 52(28): 8144-8164.
doi: 10.1016/j.electacta.2007.05.071 URL |
[8] |
Tang Z, Huang Q A, Wang Y J, Zhang F Z, Li W H, li A J, Zhang L, Zhang J J. Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance[J]. J. Power Sources, 2020, 468: 228361.
doi: 10.1016/j.jpowsour.2020.228361 URL |
[9] | Huang Q A(黄秋安), Li W H(李伟恒), Tang Z P(汤哲鹏), Zhang F Z(张方舟), Li A J(李爱军), Zhang J J(张久俊). Fundamentals of electrochemical impedance spectroscopy[J]. Chin. J. Nat.(自然杂志), 2020, 42(1): 12-26. |
[10] |
Huang Q A, Shen Y, Huang Y H, Zhang L, Zhang J J. Impedance characteristics and diagnoses of automotive lithium-ion batteries at 7.5% to 93.0% state of charge[J]. Electrochim. Acta, 2016, 219: 751-765.
doi: 10.1016/j.electacta.2016.09.154 URL |
[11] | Robert D L. Electrochemical response of porous and rough electrodes[M]// Advances in electrochemistry and electrochemical engineering, Interscience Publishers—J. Wiley and Son, Inc., New York, 1967, 6: 329-397. |
[12] |
Paasch G, Micka K, Gersdorf P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes[J]. Electrochim. Acta, 1993, 38(18): 2653-2662.
doi: 10.1016/0013-4686(93)85083-B URL |
[13] |
Lasia A. Impedance of porous electrodes[J]. J. Electroanal. Chem., 1995, 397(1-2): 27-33.
doi: 10.1016/0022-0728(95)04177-5 URL |
[14] |
Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Compte A . Anomalous transport effects in the impedance of porous film electrodes[J]. Electrochem. Commun., 1999, 1(9): 429-435.
doi: 10.1016/S1388-2481(99)00084-3 URL |
[15] | Li Y(李雨), Yang W M(杨维明), Huang Q A(黄秋安), Li W H(李伟恒), Li X F(李喜飞), Zhang J J(张久俊). Simulation of Warburg impedance spectra under finite diffusion boundary conditions for porous energy electrode materials[J]. J. Xi'an Univ. Technol.(西安理工大学学报), 2019, 35(2): 138-146. |
[16] |
Meyers J P, Doyle M, Darling R M, Newman J. The impedance response of a porous electrode composed of intercalation particles[J]. J. Electrochem. Soc., 2000, 147(8): 2930-2940.
doi: 10.1149/1.1393627 URL |
[17] |
Tröltzsch U, Kanoun O. Generalization of transmission line models for deriving the impedance of diffusion and porous media[J]. Electrochim. Acta, 2012, 75: 347-356.
doi: 10.1016/j.electacta.2012.05.014 URL |
[18] |
Siroma Z, Fujiwara N, Yamazaki S, Asahi M, Nagai T, Ioroi T. Mathematical solutions of comprehensive variations of a transmission-line model of the theoretical impedance of porous electrodes[J]. Electrochim. Acta, 2015, 160: 313-322.
doi: 10.1016/j.electacta.2015.02.065 URL |
[19] |
Huang J, Zhang J B. Theory of impedance response of porous electrodes: simplifications, inhomogeneities, non-stationarities and applications[J]. J. Electrochem. Soc., 2016, 163(9): A1983-A2000.
doi: 10.1149/2.0901609jes URL |
[20] |
Zhang Z M, Gao Y, Chen S L, Huang J. Understanding dynamics of electrochemical double layers via a modified concentrated solution theory[J]. J. Electrochem. Soc., 2020, 167(1): 013519.
doi: 10.1149/2.0192001JES URL |
[21] |
Zhuang Q C(庄全超), Yang Z(杨梓), Zhang L(张蕾), Cui Y H(崔艳华). Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem.(化学进展), 2020, 32(6): 761-791.
doi: 10.7536/PC191116 |
[22] |
Huang J, Gao Y, Luo J, Wang S S, Li C K, Chen S L, Zhang J B. Editors’ choice-Review-Impedance response of porous electrodes: Theoretical framework, physical models and applications[J]. J. Electrochem. Soc., 2020, 167(16): 166503.
doi: 10.1149/1945-7111/abc655 URL |
[23] |
Zhu C B, Usiskin R E, Yu Y L, Maier J. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369): eaao2808.
doi: 10.1126/science.aao2808 URL |
[24] |
Ramadesigan V, Northrop P W C, De S, Santhanagopalan S, Braatz R D, Subramanian V R. Modeling and simulation of lithium-ion batteries from a systems engineering perspective[J]. J. Electrochem. Soc., 2012, 159(3): R31-R45.
doi: 10.1149/2.018203jes URL |
[25] | Huang Q A, Li Y, Tsay K, Sun C W. Multi-scale impedance model for supercapacitor porous electrodes: Theoretical prediction and experimental validation[J]. J. Power Sour-ces, 2018, 400: 69-86. |
[26] |
Huang Q A, Park S M. Unified model for transient faradaic impedance spectroscopy: theory and prediction[J]. J. Phys. Chem. C, 2012, 116(32): 16939-16950.
doi: 10.1021/jp306140w URL |
[27] | Mei W X, Chen H D, Sun J H, Wang Q S. The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model[J]. Sustain. Energy Fuels, 2019, 3(1): 148-165. |
[28] | Yoon S H, Jang J H, Ka B H, Oh S M. Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness[J]. Ele-ctrochim. Acta, 2005, 50(11): 2255-2262. |
[29] |
Honda K, Rao T N, Tryk D A, Fujishima A. Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications[J]. J. Electrochem. Soc., 2001, 148(7): A668-A679.
doi: 10.1149/1.1373450 URL |
[30] |
Lasia A. Impedance of porous electrodes[J]. J. Electroanal. Chem., 1995, 397(1-2): 27-33.
doi: 10.1016/0022-0728(95)04177-5 URL |
[31] |
Jurczakowski R, Hitz C, Lasia A. Impedance of porous Au based electrodes[J]. J. Electroanal. Chem., 2004, 572(2): 355-366.
doi: 10.1016/j.jelechem.2004.01.008 URL |
[32] |
Meyers J P, Doyle M, Darling R M, Newman J. The im-pedance response of a porous electrode composed of intercalation particles[J]. J. Electrochem. Soc., 2000, 147(8): 2930-2940.
doi: 10.1149/1.1393627 URL |
[33] |
Guo Q Z, Subramanian V R, Weidner J W, White R E. Estimation of diffusion coefficient of lithium in carbon using AC impedance technique[J]. J. Electrochem. Soc., 2002, 149(3): A307-A318.
doi: 10.1149/1.1447224 URL |
[34] |
Yu P, Popov B N, Ritter J A, et al. Determination of the lithium ion diffusion coefficient in graphite[J]. J. Electro-chem. Soc., 1999, 146(1): 8-14.
doi: 10.1149/1.1391556 URL |
[35] |
Ji F, Wang L, Yang J, Wu X. Highly compact, free-standing porous electrodes from polymer-derived nanoporous carbons for efficient electrochemical capacitive deionization[J]. J. Mater. Chem. A, 2019, 7(4): 1768-1778.
doi: 10.1039/C8TA10268F URL |
[36] | Lanzi O, Landau U. Effect of pore structure on current and potential distributions in a porous electrode[J]. J. Ele-ctrochem. Soc., 1990, 137(2): 585-593. |
[37] |
Lee S B, Pathak C, Ramadesigan V, Gao W Z, Subramanian V R. Direct, efficient, and real-time simulation of physics-based “battery models for stand-alone PV-battery microgrids[J]. J. Electrochem. Soc., 2017, 164(11): E3026-E3034.
doi: 10.1149/2.0031711jes URL |
[38] |
Deng Z W, Deng H, Yang L, Cai Y S, Zhao X W. Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery[J]. Energy, 2017, 138: 509-519.
doi: 10.1016/j.energy.2017.07.069 URL |
[39] |
Seok D, Jeong Y, Han K, Yoon D Y, Sohn H. Recent pro-gress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy[J]. Sustainability, 2019, 11(13): 3694.
doi: 10.3390/su11133694 URL |
[40] |
Jeerapan I, Ma N. Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices[J]. C—Journal of Carbon Research, 2019, 5(4): 62.
doi: 10.3390/c5040062 URL |
[41] |
Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochim. Acta, 2006, 51(8-9): 1636-1640.
doi: 10.1016/j.electacta.2005.02.137 URL |
[42] |
Itagaki M, Hatada Y, Shitanda I, Watanabe K. Complex impedance spectra of porous electrode with fractal structure[J]. Electrochim. Acta, 2010, 55(21): 6255-6262.
doi: 10.1016/j.electacta.2009.10.016 URL |
[43] | Yoo H D, Jang J H, Ryu J H, Park Y, Oh S M. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors[J]. J. Power Sour-ces, 2014, 267: 411-420. |
[1] | Lu-Lu Zhang, Chen-Kun Li, Jun Huang. A Beginners’ Guide to Modelling of Electric Double Layer under Equilibrium, Nonequilibrium and AC Conditions [J]. Journal of Electrochemistry, 2022, 28(2): 2108471-. |
[2] | WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling [J]. Journal of Electrochemistry, 2020, 26(6): 777-788. |
[3] | WANG Jia, HUANG Qiu-an, LI Wei-heng, WANG Juan, ZHUANG Quan-chao, ZHANG Jiu-jun. Fundamentals of Distribution of Relaxation Times for Electrochemical Impedance Spectroscopy [J]. Journal of Electrochemistry, 2020, 26(5): 607-627. |
[4] | JI Wei-xiao, WANG Gong-wei, WANG Qiang, BAI Li-jun, QU De-yang. Porous Electrodes in Electrochemical Energy Storage Systems [J]. Journal of Electrochemistry, 2020, 26(5): 576-595. |
[5] | WANG Xiao-xiao, ZHOU Zi-rui, SHAN Qiang, ZHANG Zeng-ming, HUANG Jun, LIU Yu-wen, CHEN Sheng-li. Porous-Electrode Theory of Lithium Ion Battery: Old Paradigm and New Challenge [J]. Journal of Electrochemistry, 2020, 26(5): 596-606. |
[6] | GUO Jian-wei, WANG Jian-long . The Pilot Application of Electrochemical Impedance Spectroscopy on Dynamic Proton Exchange Membrane Fuel Cell [J]. Journal of Electrochemistry, 2018, 24(6): 687-696. |
[7] | WEI Yi-min. Intrinsic Kinetic Properties of Ternary Material for Lithium Ion Batteries Assessed by Single Particle Microelectrode [J]. Journal of Electrochemistry, 2018, 24(1): 81-88. |
[8] | LIAO Qun ZHANG Shu-feng LENG Wen-hua. Kinetics and Mechanism toward Electrochemical Reductions of Sodium Bromide and Methanol over Iron Electrodes [J]. Journal of Electrochemistry, 2017, 23(6): 645-653. |
[9] | SHI Kun-ming, GUO Jian-wei, WANG Jia. The Study of Dynamical Electrochemical Impedance Spectroscopy for Oxygen Reduction Reaction on Pt/C Catalyst [J]. Journal of Electrochemistry, 2016, 22(5): 542-548. |
[10] | GU Jing, QIAO Yong-hui, ZHU Xin-yu, YIN Xiao-hong, ZHANG Xin, CHEN Ye, ZHU Zhi-wei, SHAO Yuan-hua*. Electrochemistry at Liquid/Liquid Interfaces and Its Recent Progresses [J]. Journal of Electrochemistry, 2014, 20(3): 234-242. |
[11] | LI Yang, HUANG Bo*, YUAN Meng, ZHANG Zhi-qiu, LIU Zong-yao, TANG Xu-chen, ZHU Xin-jian. Fabrication and Impedance Performance of Gradient LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2 Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2014, 20(1): 45-50. |
[12] | LENG Wen-hua*, ZHU Hong-qiao. An Investigation of Photocatalytic Degradation Reactions of Pollutants by Combination of (Photo)electrochemical Measurements [J]. Journal of Electrochemistry, 2013, 19(5): 437-443. |
[13] | REN Rui-Xuan, HUANG Bo, ZHU Xin-Jian, HU Yi-Xing, DING Xiao-Yi, LIU Zong-Yao, LIU Ye-Bin. Fabrication and Performance of LaNi0.6Fe0.4O3-δ Cathode Modified by Coating with Gd0.2Ce0.8O2 for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2013, 19(3): 275-280. |
[14] | CUI Cong-Ying, MA Xue-Mei, KONG De-Long, MA Hou-Yi*. A Comparative Study of Charge-Discharge Behaviors of α-PbO2 and β-PbO2 Cathodes [J]. Journal of Electrochemistry, 2013, 19(1): 43-52. |
[15] | ZHANG Ya-Li, XIN Sen, GUO Yu-Guo, WAN Li-Jun. Comments on Internal Alternating Current Resistance Test Standard and Methods of Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2012, 18(3): 205-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||