Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (4): 396-404. doi: 10.13208/j.electrochem.200614
Previous Articles Next Articles
Shuang-Juan Liu1, Hai-Jing Wang2,*(), Jing Guo1,*(
), Peng-Cheng Wang2, Hao Zhou1, Cai Meng2, Han-Jie Guo1
Received:
2020-06-13
Revised:
2020-07-20
Online:
2021-08-28
Published:
2020-09-23
Contact:
Hai-Jing Wang,Jing Guo
E-mail:wanghaijing@ihep.ac.cn;guojing@ustb.edu.cn
Shuang-Juan Liu, Hai-Jing Wang, Jing Guo, Peng-Cheng Wang, Hao Zhou, Cai Meng, Han-Jie Guo. A Preliminary Study on Graphene Film-Metal Composites Prepared by Electrodeposition[J]. Journal of Electrochemistry, 2021, 27(4): 396-404.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.200614
Table 1
Electrodeposition experiment parameters
Experiment type | Concentration of main bath components/(g·L-1) | Current density/ (mA·cm-2) | Bath temperature/℃ | Deposition time/h |
---|---|---|---|---|
Electrodeposited copper | Triethanolamine 12 Glycerol 20 Tetramethylammonium chloride 45 CH3OH 205, CuSO4·5H2O 50 | 12.5 | 35 | 24 |
Electrodeposited chromium | CrCl3·6H2O 107 HCOONH4 50, NH4Cl 100 NaCl 200, H3BO3 40 KBr 12 PEG400 4 | 150 | 30 | 1 |
Table 2
GF-Cu coating sample scratch test results
Sample number | Observation of each scratch position | Adhesion level | Remark | ||||||
---|---|---|---|---|---|---|---|---|---|
lot number I0118097 | |||||||||
-Original sample number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
-1 | No | No | No | No | No | No | Yes | 7 | - |
-2 | No | No | No | No | No | No | No | 7 | Overall flaking |
-3 | No | No | No | No | No | No | No | 7 | Obvious flaking |
Table 3
Crystallographic parameters of each element
Element | Syngony | Lattice constant (25 ℃)/nm | Coefficient of linear expansion α/ (10-6·K-1) | Melting point/℃ | Ref. | |||
---|---|---|---|---|---|---|---|---|
a0 | c0 | a | a | |||||
C | Hexagonal | 0.2461 | 0.6708 | 0.2463 | 0.2475 | 7.1 | 3826 | [ |
Cu | Cubic | 0.3615 | - | 0.3621 | 0.3661 | 16.5 | 1084 | [ |
Cr | Cubic | 0.3524 | - | 0.3528 | 0.3561 | 13.4 | 1455 | [ |
Table 4
Calculation of disregistry between GF and Cu, Cr interfaces at 25 ℃
Matching interface | (0001)C//(100)Cu | (0001)C//(110)Cu | (0001)C//(111)Cu | ||||||
---|---|---|---|---|---|---|---|---|---|
(hkl)C | [20] | [100] | [110] | [20] | [100] | [110] | [20] | [100] | [110] |
(hkl)Cu | [010] | [031] | [011] | [001] | [12 ] | [10] | [01] | [11] | [10] |
dC/nm | 0.2461 | 0.4263 | 0.2461 | 0.2461 | 0.4263 | 0.2461 | 0.2461 | 0.4263 | 0.2461 |
dCu/nm | 0.5112 | 0.8083 | 0.3615 | 0.5112 | 0. 261 | 0.3615 | 0.3615 | 0.6261 | 0.3615 |
θ/(°) | 0 | 11.56 | 15 | 0 | 4.89 | 30 | 0 | 0 | 0 |
dCcosθ | 0.2461 | 0.4177 | 0.2377 | 0.2461 | 0.4247 | 0.2131 | 0.2461 | 0.4263 | 0.2461 |
δ/% | 44.81 | 41.69 | 31.92 | ||||||
Matching interface | (0001)C//(100)Cr | (0001)C//(110)Cr | (0001)C//(111)Cr | ||||||
(hkl)C | [20] | [110] | [00] | [20] | [110] | [00] | [20] | [100] | [110] |
(hkl)Cr | [010] | [011] | [001] | [001] | [11] | [10] | [10] | [21] | [011] |
dC/nm | 0.2461 | 0.2461 | 0.4263 | 0.2461 | 0.2461 | 0.4263 | 0.2461 | 0.4263 | 0.2461 |
dCr/nm | 0.2910 | 0.4115 | 0.2910 | 0.2910 | 0.2520 | 0.4115 | 0.4115 | 0.7128 | 0.4115 |
θ/(°) | 0 | 15 | 0 | 0 | 5.26 | 0 | 0 | 0 | 0 |
dCcosθ | 0.2461 | 0.2377 | 0.4263 | 0.2461 | 0.2451 | 0.4263 | 0.2461 | 0.4263 | 0.2461 |
δ/% | 34.72 | 7.26 | 40.19 |
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
doi: 10.1126/science.1102896 URL |
[2] |
Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
doi: 10.1126/science.1157996 URL |
[3] |
Wang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Room-temperature ferromagnetism of graphene[J]. Nano Lett., 2009, 9(1): 220-224.
doi: 10.1021/nl802810g URL |
[4] |
Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study[J]. Phys. Rev. B, 2004, 69(7): 075414.
doi: 10.1103/PhysRevB.69.075414 URL |
[5] | Zhao Z Z(赵真真), Ni W B(倪文彬), Gao N Y(高能越), Wang H B(王洪波), Zhao J W(赵健伟). Effects of graphene on the electrochemical behaviors of Ni(OH)2 as supercapacitor material[J]. J. Electrochem.(电化学), 2011, 17(3): 292-299. |
[6] |
Hang L F, Zhao Y, Zhang H H, Liu G Q, Cai W P, Li Y, Qu L T. Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance[J]. Acta Mater., 2016, 105: 59-67.
doi: 10.1016/j.actamat.2015.12.029 URL |
[7] |
Huang G, Wang H, Cheng P, Wang H Y, Sun B, Sun S, Zhang C C, Chen M M, Ding G F. Preparation and characterization of the graphene-Cu composite film by electrodeposition process[J]. Microelectron. Eng., 2016, 157: 7-12.
doi: 10.1016/j.mee.2016.02.006 URL |
[8] | Hou Y C(侯永超), Huang L J(黄林军), Wang Y X(王彦欣), Tang J G(唐建国), Liu J X(刘继宪), Wang Y(王瑶), Jiao J Q(焦吉庆), Wang W(王薇), Zhao Y C(赵运超). Preparation of graphene/silver hybrid materials and research of Raman enhanced performance[J]. Appl. Chem. Ind.(应用化工), 2016, 45(5): 806-809. |
[9] | Zhao Y R(赵亚茹), Li Y(李勇), Li H(李焕). Research progress of graphene reinforced copper matrix composites[J]. Surf. Technol.(表面技术), 2016, 45(5): 33-40. |
[10] |
Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv. Mater., 2012, 24(30): 4144-4150.
doi: 10.1002/adma.201200197 URL |
[11] |
Pham V H, Cuong T V, Hur S H, Shin, E W, Chung J S, Kim E J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
doi: 10.1016/j.carbon.2010.01.062 URL |
[12] | Shuai X R(帅骁睿), Yang S L(杨仕玲), Yang H C(杨化超), Wu S H(吴声豪), Duan L P(段良平). Research on the penetration an electrochemical energy storage of graphene paper electrode for supercapacitor[J]. NCM(化工新型材料), 2019, 47(1): 124-127. |
[13] |
Gwon H, Kim H, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K. Flexible energy storage devices based on graphene paper[J]. Energy Environ. Sci., 2011, 4(4): 1277-1283.
doi: 10.1039/c0ee00640h URL |
[14] |
Dai Y, Cai S D, Yang W J, Gao L, Tang W P, Xie J Y, Zhi J, Ju X M. Fabrication of self-binding noble metal/flexible graphene composite paper[J]. Carbon, 2012, 50(12): 4648-4654.
doi: 10.1016/j.carbon.2012.05.053 URL |
[15] | Zan X. Flexible electrochemical biosensors based on interfacially assembled metal nanocrystals and graphene paper[D]. Singapore: Nanyang Technological University, 2016. |
[16] |
Wang Z, Mao B Y, Wang Q L, Yu J, Dai J X, Song R G, Pu Z H, He D P, Wu Z, Mu S C. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness[J]. Small, 2018, 14(20): 1704332.
doi: 10.1002/smll.v14.20 URL |
[17] | Kirihata K, Arai S, Uejima M, Hirota M. Fabrication of copper/single-walled carbon nanotube composite plating films by electrodeposition[J]. J. Radiol., 2015, 89(10): 1450. |
[18] |
Danilov F I, Protsenko V S, Gordiienko V O, Kwon S C, Lee J Y, Kim M. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits[J]. Appl. Surf. Sci., 2011, 257(18): 8048-8053.
doi: 10.1016/j.apsusc.2011.04.095 URL |
[19] | Cheng T(程韬), Jia J G(贾建刚), Ma Q(马勤), Ji G S(季根顺), Guo T M(郭铁明). Deposition of homogeneous copper layer on short carbon fibers using electrochemical method[J]. T. Mater. Heat Treat., 2014, 35(9): 167-171. |
[20] |
Gao H C, Wang Y X, Xiao F, Ching C B, Duan H W. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells[J]. J. Phys. Chem. C, 2012, 116(14): 7719-7725.
doi: 10.1021/jp3021276 URL |
[21] | Wang P(王鹏), Li C R(李长荣), Liu R(刘然), Shi S(师帅). Calculation of disregistry degree of ε-Cu precipitation induced by rare earth inclusion in steel[J]. J. Chin. Soc. Rear Earth.(中国稀土学报), 2018, 36(3): 314-318. |
[22] | Song Q(宋琴), Wu J W(武俊伟), Zhang H(张辉), Du C W(杜翠薇). Performance of Ti-based dimensionally stable anode for chromium plating application[J]. J. Chin. Soc. Corros. Prot.(中国腐蚀与防护学报), 2013, 33(6): 507-514. |
[23] |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metall. Trans., 1970, 1(7): 1987-1995.
doi: 10.1007/BF02642799 URL |
[24] | Shi R X(师瑞霞), Yang R C(杨瑞成), Zhou C H(周春华), Yin Y S(尹衍升), Ma L P(马来鹏). The relationship between lattice constants and temperature in EET[J]. J. Shanghai. Univ. -Eng. Sci.(山东大学学报: 工学版), 2004, 34(5): 5-8,98. |
[25] |
Gómez M A, Romero J, Lousa A, Esteve J. Tribological performance of chromium/chromium carbide multilayers deposited by r.f. magnetron sputtering[J]. Surf. Coat. Technol., 2005, 200(5-6): 1819-1824.
doi: 10.1016/j.surfcoat.2005.08.060 URL |
[26] |
Qin Z B, Luo Q, Zhang Q, Wu Z, Liu L, Shen B, Hu W B. Improving corrosion resistance of nickel-aluminum bronzes by surface modification with chromium ion implantation[J]. Surf. Coat. Technol., 2018, 334: 402-409.
doi: 10.1016/j.surfcoat.2017.11.066 URL |
[27] | Cao T C(曹天赐). Research on the performance and mechanism of lithium metal-graphene paper composite anode[D]. Beijing: Beijing University of Technology, 2019. |
[28] | Yu Y N(余永宁). Materials science[M]. Beijing: Higher Education Press(高等教育出版社), 2006: 777-781. |
[29] | Chen W R(陈蔚然). Crystal structure of graphite[J]. Carbon Tech.(炭素技术), 1990, 4: 39-40. |
[30] | Zhang H H(张恒华). Metal binary system phase diagram manual[J]. Heat Treat.(热处理), 2010, 25(1): 78. |
[1] | Li-Jun Wei, Zi-Han Zhou, Yun-Wen Wu, Ming Li, Su Wang. Research Progresses of Cobalt Interconnect and Superfilling by Electroplating in Chips [J]. Journal of Electrochemistry, 2022, 28(6): 2104431-. |
[2] | Hao-Bin Zou, Chao-Li Tan, Wei Xiong, Dao-Lin Xi, Bin-Yun Liu. Introduction of Development and Application Technology of Organic Additives for Acid Copper Electroplating [J]. Journal of Electrochemistry, 2022, 28(6): 2104531-. |
[3] | Hua Miao, Ming-Rui Li, Wen-Zhong Zou, Guo-Yun Zou, Shou-Xu Wang, Xiao-Jing Ye, Kai Zhu. Study on the Effect of Additives in the Electrodeposition of Sn-Ag-Cu Ternary Alloy Solder [J]. Journal of Electrochemistry, 2022, 28(6): 2104411-. |
[4] | Ren-Zhi Liu, Ping-Ling Xie, Chong Wang. Microstructure of Electrodeposited Copper Foil: Discussion on the Mechanism Model of Three-Dimensional Electrocrystallization [J]. Journal of Electrochemistry, 2022, 28(6): 2104481-. |
[5] | Zhan Chong-Bo, Zhang Run-Jia, Fu Xu, Sun Hai-Jing, Zhou Xin, Wang Bao-Jie, Sun Jie. Effect of Chloride Ion on Electrochemical Behavior of Silver Electrodeposition in ChCl-Urea Low Eutectic Solvent [J]. Journal of Electrochemistry, 2022, 28(5): 2111151-. |
[6] | Hao Wang, Xiao-Zhou Cao, Xiang-Xin Xue. Study on Electrodeposition of Antimony in Choline Chloride-Ethylene Glycol Eutectic Solvent [J]. Journal of Electrochemistry, 2022, 28(4): 2103071-. |
[7] | Shi-Wei Sun, Jian-Jun Nie, Yi-Cheng Song. Effects of Electrode Shape on Lithiation Process of Lithium-ion Battery Electrodes [J]. Journal of Electrochemistry, 2022, 28(4): 2105061-. |
[8] | Yue Wang, Li-Min Zhang, Yang Tian. Rational Design of Electrochemical Molecular Probes for Highly Selective and Long-Term Measurement In Vivo [J]. Journal of Electrochemistry, 2022, 28(3): 2108451-. |
[9] | Li-Hua Zhang, Hong-Yuan Chuai, Hai Liu, Qun Fan, Si-Yu Kuang, Sheng Zhang, Xin-Bin Ma. Facet Dependent Oxygen Evolution Activity of Spinel Cobalt Oxides [J]. Journal of Electrochemistry, 2022, 28(2): 2108481-. |
[10] | Jiang Li, Zuo-Peng Li, Yun-Feng Bai, Su-Xing Luo, Yong Guo, Ya-Yan Bao, Rong Li, Hai-Yan Liu, Feng Feng. A Flexible Enzymeless Glucose Sensor via Electrodepositing 3D Flower-like CoS onto Self-Supporting Graphene Tape Electrode [J]. Journal of Electrochemistry, 2022, 28(1): 2104211-. |
[11] | Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai. Copper Nanoparticles In-Situ Anchored on Nitrogen-Doped Carbon for High-Efficiency Oxygen Reduction Reaction Electrocatalyst [J]. Journal of Electrochemistry, 2021, 27(6): 671-680. |
[12] | Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li. Photoelectrochemical Sensing Based on Zr-MOFs for Homocysteine Detection [J]. Journal of Electrochemistry, 2021, 27(6): 681-688. |
[13] | Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao. Influence of Heat Treatment Time on Cathode Material Cr8O21 for Lithium Battery [J]. Journal of Electrochemistry, 2021, 27(6): 689-697. |
[14] | Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma. Formation and Morphological Evolution of Nanoporous Anodized Iron Oxide Films [J]. Journal of Electrochemistry, 2021, 27(6): 637-645. |
[15] | Li-Qun Du, Yi-Kui Wen, Fa-Long Guan, Ke Zhai, Zuo-Yan Ye, Chao Wang. Study on the Uniformity of Microgrooves in Through-Mask Electrochemical Micromachining with Moving Cathode [J]. Journal of Electrochemistry, 2021, 27(6): 658-670. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||