Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (2): 230-242. doi: 10.13208/j.electrochem.191142
Special Issue: “电催化和燃料电池”专题文章
• Special Issue:High Temperature Electrochemistry (Guest Editor: Professor Jiang Liu, South China University of Technology) • Previous Articles Next Articles
Lü Zhe1,*(), WEI Bo1, WANG Zhi-hong1, TIAN Yan-ting2
Received:
2019-11-18
Revised:
2019-12-19
Online:
2020-04-28
Published:
2020-01-16
Contact:
Lü Zhe
E-mail:lvzhe@hit.edu.cn
CLC Number:
Lü Zhe, WEI Bo, WANG Zhi-hong, TIAN Yan-ting. Materials, Micro-Stacks and Related Applications of Single-Chamber Solid Oxide Fuel Cells[J]. Journal of Electrochemistry, 2020, 26(2): 230-242.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.191142
[1] | Wachsman E D, Marlowe C A, Lee K T . Role of solid oxide fuel cells in a balanced energy strategy[J]. Energy Environmental Science, 2012,5(2):5498-5509. |
[2] | Gao Z, Mogni L V, Miller E C , et al. A perspective on low-temperature solid oxide fuel cells[J]. Energy & Environmental Science, 2016,9(5):1602-1644. |
[3] | Kilner J A, Burriel M . Materials for intermediate-temperature solid-oxide fuel cells[J]. Annual Review of Materials Research, 2014,44:365-393. |
[4] | Irvine J T S, Neagu D, Verbraeken M C , et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016,1(1):15014. |
[5] | Yano M, Tomita A, Sano M , et al. Recent advances in single-chamber solid oxide fuel cells: A review[J]. Solid State Ionics, 2007,177:3351-3359. |
[6] | Wang K( 王康), Shao Z P( 邵宗平 ). The single chamber solid oxide fuel cell[J]. Progress in Chemistry( 化学进展), 2007,19(2/3):267-275. |
[7] | Kuhn M, Napporn T W . Single-chamber solid oxide fuel cell technology—From its origins to today’s state of the art[J]. Energies, 2010,3(1):57-134. |
[8] | Hibino T, Hashimoto A, Inoue T , et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures[J]. Science, 2000,288(5473):2031-2033. |
[9] | Shao Z P, Haile S M, Ahn J, Barnett S A . et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature, 2005,435(7043):795-798. |
[10] | Eyraud C, Enoir L, Gery M . Fuel cells utilizing the electrochemical properties of absorbates[J]. Comptes Rendus, 1961,252:1599-1603. |
[11] | Gool W V . The possible use of surface migration in fuel cells and herogenrous catalysis[J]. Phillips Research Re-ports, 1965,20:81-93. |
[12] | Louis G A, Lee J M, Maricle D L , et al. Solid electrolyte electrochemical cell[P]. US Patent 4248941, 1981. |
[13] | Dyer C K . A novel thin-film electrochemical device for energy conversion CuO[J]. Nature, 1990,343(6258):547-548. |
[14] | Hibino T, Wang S, Kakimoto S , et al. Single chamber solid oxide fuel cell constructed from an yttria-stabilized zirconia electrolyte[J]. Electrochemical and Solid-State Letters, 1999,2(7):317-319. |
[15] | Hibino T, Wang S Q, Kakimoto S , et al. One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode[J]. Solid State Ionics, 2000,127(1/2):89-98. |
[16] | Shao Z P, Haile S M . A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004,431:170-173. |
[17] | Hibino T, Iwahara H . Simplification of solid oxide fuel cell system using partial oxidation of methane[J]. Chemistry Letters, 1993,22(7):1131-1134. |
[18] | Hibino T, Ushiki K, Kuwahara Y . New concept for simplifying SOFC system[J]. Solid State Ionics, 1996,91(1/2):69-74. |
[19] | Riess I, Vanderput P J, Schoonman J . Solid oxide fuel-cells operating on uniform mixtures of fuel and air[J]. Solid State Ionics, 1995,82(1/2):1-4. |
[20] | Hibino T, Hashimoto A, Inoue T , et al. A solid oxide fuel cell using an exothermic reaction as the heat source[J]. Journal of The Electrochemical Society, 2001,148(6):A544-A549. |
[21] | Bay L, Horita T, Sakai N , et al. Hydrogen solubility in prdoped and un-doped YSZ for a one chamber fuel cell[J]. Solid State Ionics, 1998,113(S1):363-367. |
[22] | Mordarski G, Suski L, Kolacz J , et al. Electrode open circuit potentials and oxidation process at Au and Pt electrodes/solid oxide electrolyte interfaces in common methane plus air gas mixture[J]. Polish Journal of Chemistry, 2005,79(6):1063-1077. |
[23] | Asano K, Hibino T, Iwahara H . A novel solid oxide fuel cell system using the partial oxidation of methane[J]. Journal of The Electrochemical Society, 1995,142(10):3241-3245. |
[24] | Hibino T, Hashimoto A, Yano M , et al. High performance anodes for SOFC operating in methane-air mixture at reduced temperatures[J]. Journal of The Electrochemical Society, 2002,149(2):A133-A136. |
[25] | Zhang C M, Sun L L, Ran R , et al. Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process[J]. Electrochemistry Communications, 2009,11(8):1563-1566. |
[26] | Zhang C M, Lin Y, Ran R , et al. Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst[J]. Intermational Journal of Hydrogen Energy, 2010,35(15):8171-8176. |
[27] | Tomita A, Hirabayashi D, Hibino T , et al. Single-chamber SOFC with a Ce0.9Gd0.1O1.95 electrolyte film for low-temperature operation[J]. Electrochemical and Solid State Letters, 2005,8(1):A63-A65. |
[28] | Jacques-Bedard X, Napporn T W, Roberge R , et al. Coplanar electrodes design for a single-chamber SOFC— Assessment of the operating parameters[J]. Journal of The Electrochemical Society, 2007,154(3):B305-B309. |
[29] | Wang Z H, Lü Z, Chen K F , et al. Redox tolerance of thin and thick Ni/YSZ anodes of electrolyte-supported single-chamber solid oxide fuel cells under methane oxidation conditions[J]. Fuel Cells, 2013,13(6):1109-1115. |
[30] | Zhu X B, Lü Z, Wei B , et al. Fabrication and evaluation of a Ni/La0.75Sr0.25Cr0.5Fe0.5O3-δ co-impregnated yttria-stabili-zed zirconia anode for single-chamber solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2010,35(13):6897-6904. |
[31] | Hibino T, Hashimoto A, Inoue T , et al. Single-chamber solid oxide fuel cells at intermediate temperatures with various hydrocarbon-air mixtures[J]. Journal of The Electrochemical Society, 2000,147(8):2888-2892. |
[32] | Lü Z( 吕喆), Wei B( 魏波), Tian Y T( 田彦婷 ), et al. Key materials and micro-stacks of single chamber solid oxide fuel cells[J]. Progress in Chemistry( 化学进展), 2011,23(2/3):183-196. |
[33] | Steele B C H . Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 oC [J]. Solid State Ionics, 2000,129(1/4):95-110. |
[34] | Wei B, Lü Z, Huang X Q , et al. Enhanced performance of a single-chamber solid oxide fuel cell with an SDC-impregnated cathode[J]. Journal of Power Sources, 2007,167(1):58-63. |
[35] | Liu M L, Lü Z, Wei B , et al. Anode-supported micro-SOFC stacks operated under single-chamber conditions[J]. Journal of The Electrochemical Society 2007,154(6):B588-B592. |
[36] | Suzuki T, Jasinski P, Anderson H U , et al. Single chamber electrolyte supported SOFC module[J]. Electrochemical and Solid State Letters, 2004,7(11):A391-A393. |
[37] |
Jacques-Bedard X, Napporn T W, Roberge R , et al. Performance and ageing of an anode-supported SOFC operated in single-chamber conditions[J]. Journal of Power Sources, 2006,153(1):108-113.
doi: 10.1016/j.jpowsour.2005.03.138 URL |
[38] | Napporn T W, Jacques-Bedard X, Morin F , et al. Operating conditions of a single-chamber SOFC[J]. Journal of The Electrochemical Society, 2004,151(12):A2088-A2094. |
[39] | Shao Z P, Zhang C M, Wang W , et al. Electric power and synjournal gas co-generation from methane with zero waste gas emission[J]. Angewandte Chemie International Edition, 2011,50(8):1792-1797. |
[40] | Gaudillere C, Olivier L, Vernoux P , et al. Alternative perovskite materials as a cathode component for intermediate temperature single-chamber solid oxide fuel cell[J]. Journal of Power Sources 2010,195(15):4758-4764. |
[41] | Morel B, Roberge R, Savoie S , et al. Catalytic activity and performance of LSM cathode materials in single chamber SOFC[J]. Applied Catalysis A - General, 2007,323:181-187. |
[42] | Liu M L, Lü Z, Wei B , et al. Study on impedance spectra of La0.7Sr0.3MnO3 and Sm0.2Ce0.8O1.9-impregnated La0.7Sr0.3-MnO3 cathode in single chamber fuel cell condition[J]. Electrochimica Acta, 2009,54(20):4726-4730. |
[43] | Suzuki T, Jasinski P, Anderson H U , et al. Role of composite cathodes in single chamber SOFC[J]. Journal of The Electrochemical Society 2004,151(10):A1678-A1682. |
[44] | Shao Z P, Haile S M . A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004,431(7005):170-173. |
[45] | Zhang Y, Gao X C, Sunarso J , et al. Significantly improving the durability of single-chamber solid oxide fuel cells: A highly active CO2-resistant perovskite cathode[J]. ACS Applied Energy Materials, 2018,1(3):1337-1343. |
[46] | Ai G( 艾刚), Lü Z( 吕喆), Wei B( 魏波 ), et al. Performance of anode supported single chamber solid oxide fuel cells[J]. Chinese Journal of Catalysis( 催化学报), 2006,27(10):885-889. |
[47] |
Liu M L, Lü Z, Wei B , et al. Effect of the cell distance on the cathode in single chamber SOFC short stack[J]. Journal of The Electrochemical Society, 2009,156(10):B1253-B1256.
doi: 10.1149/1.3196245 URL |
[48] | Liu M L, Qi X, Lü Z , et al. Effect of flow geometry on anode-supported single chamber SOFC arrayed as V-shape[J]. International Journal of Hydrogen Energy, 2013,38(4):1976-1982. |
[49] | Liu M L, Lü Z, Wei B , et al. Effects of the single chamber SOFC stack configuration on the performance of the single cells[J]. Solid State Ionics, 2010,181(19/20):939-942. |
[50] | Liu M L, Lü Z, Wei B , et al. Performance of an annular solid-oxide fuel cell micro-stack array operating in single-chamber conditions[J]. Journal of Power Sources, 2010,195:4247-4251. |
[51] |
Liu M L, Lü Z, Wei B , et al. A novel cell-array design for single chamber SOFC microstack[J]. Fuel Cells, 2010,9(5):717-721.
doi: 10.1002/fuce.v9:5 URL |
[52] |
Wei B, Lü Z, Huang X Q , et al. A novel design of single-chamber SOFC micro-stack operated in methane-oxygen mixture[J]. Electrochemistry Communications, 2009,11(2):347-350.
doi: 10.1016/j.elecom.2008.11.037 URL |
[53] |
Tian Y T, Lü Z, Liu M L , et al. Effects of gas supply method on the performance of the single-chamber SOFC micro-stack and the single cells[J]. Journal of Solid State Electrochemistry, 2013,17(1):269-275.
doi: 10.1007/s10008-012-1865-6 URL |
[54] | Tian Y T, Lü Z, Wang Z H , et al. Enhanced performance of a single-chamber solid oxide fuel cell with dual gas supply method[J]. Ionics, 2019,25(3):1281-1289. |
[55] | Tian Y T, Lü Z, Wei B , et al. A non-sealed solid oxide fuel cell micro-stack with two gas channels[J]. International Journal of Hydrogen Energy, 2011,36(12):7251-7256. |
[56] | Tian Y T, Lü Z, Zhang Y H , et al. Study of a single-cham-ber solid oxide fuel cell micro-stack with V-shaped congener-electrode-facing configuration[J]. Fuel Cells, 2012,12(1):4-10. |
[57] | Tian Y T, Lü Z, Wei B , et al. Evaluation of a non-sealed solid oxide fuel cell stack with cells embedded in plane configuration[J]. Fuel Cells, 2012,12(4):523-529. |
[58] | Horiuchi M, Suganuma S, Watanabe M . Electrochemical power generation directly from combustion flame of gases, liquids, and solids[J]. Journal of The Electrochemical Society, 2004,151(9):A1402-A1405. |
[59] | Zhu X B, Lü Z, Wei B , et al. A direct flame solid oxide fuel cell for potential combined heat and power generation[J]. International Journal of Hydrogen Energy, 2012,37(10):8621-8629. |
[60] | Zhu X B, Lü Z, Wei B , et al. Direct flame SOFC with LSCM/Ni co-impregnated yttria-stabilized zircona anodes operated on liquefied petroleum gas flame[J]. Journal of The Electrochemicl Society, 2010,157(12):B1838-B1843. |
[61] | Hibino T, Kuwahara Y, Wang S . Effect of electrode and electrolyte modification on the performance of one-cham-ber solid oxide fuel cell[J]. Journal of The Electrochemical Society, 1999,146(8):2821-2826. |
[62] | Buergler B E, Grundy A N, Gauckler L J . Thermodynamic equilibrium of single-chamber SOFC relevant methane-air mixtures[J]. Journal of The Electrochemical Society, 2006,153(7):A1378-A1385. |
[63] | Buergler B E, Siegrist M E, Gauckler L J . Single chamber solid oxide fuel cells with integrated current-collectors[J]. Solid State Ionics, 2005,176(19/22):1717-1722. |
[64] | Gubner A, Landes H, Metzger J, et al. Investigation into the degradation of cermet anode of a solid oxide fuel cell[C]// Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), The Electrochemical Society, Inc. Jülich Germany, 1997: 844-850. |
[65] | Zhang X L, Hayward D O, Mingos D M P . Further studies on oscillations over nickel wires during the partia oxidation of methane[J]. Catalysis Letters, 2003,86(4):235-243. |
[66] | Zhang X L, Mingos D M P, Hayward D O . Rate oscillations during partial oxidation of methane over chromel-alumel thermocouples[J]. Catalysis Letters, 2001,72(3/4):147-152. |
[67] | Zhang X L, Lee C S M, Hayward D O , et al. Oscillatory behaviour observed in the rate of oxidation of methane over metal catalysts[J]. Catalysis Today, 2005,105(2):283-294. |
[68] | Wang Z H, Lü Z, Wei B , et al. Redox of Ni/YSZ anodes and oscillatory behavior in single-chamber SOFC under methane oxidation conditions[J]. Electrochimica Acta, 2011,56(19):6688-6695. |
[69] | Morales M, Pérez-Falcón J M, Moure A , et al. Performance and degradation of La0.8Sr0.2Ga0.85Mg0.15O3-δ electro-lyte-supported cells in single-chamber configuration[J]. International Journal of Hydrogen Energy, 2014,39(10):5451-5459. |
[70] | Morel B, Roberge R, Savoie S , et al. Temperature and performance variations along single chamber solid oxide fuel cells[J]. Journal of Power Sources, 2009,186:89-95. |
[71] | Stefan I C, Jacobson C P, Visco S J , et al. Single chamber fuel cells: Flow geometry, rate, and composition considerations[J]. Electrochemical and Solid State Letters, 2004,7(7):A198-A200. |
[72] | Tian Y T( 田彦婷 ). Influence mechanism of gas flow distribution and gas component on single chamber fuel cell micro stack[D]. Harbin Institute of Technology( 哈尔滨工业大学), 2013: 18-39. |
[73] | Yano M, Nagaoa M, Okamoto K , et al. A single-chamber SOFC stack operating in engine exhaust[J]. Electrochemical and Solid State Letters, 2008,11(3):B29-B33. |
[74] | Wang Z H, Yan Y M, Liu M T , et al. Rapid porosity formation of silver under SOFC conditions in methane-oxygen mixed gas[J]. International Journal of Hydrogen Energy, 2016,41(47):22344-22353. |
[75] | Wang Z H, Yan Y M, Chen Y F , et al. 3D-hierarchical porous nickel sculptured by a simple redox process and its application in high-performance supercapacitors[J]. Jounral of Material Chemistry A, 2017,5(39):20709-20719. |
[76] | Cao F H, Wang Z H, Wang Y Z , et al. In situ fabrication of cellular architecture on silver metals using methane/oxygen gas mixture and its application for energy storage[J]. Electrochimica Acta, 2018,280:25-32. |
[1] | YU Cheng-rong, ZHU Jian-guo, JIANG Cong-ying, GU Yu-chen, ZHOU Ye-xin, LI Zhuo-bin, WU Rong-min, ZHONG Zheng, GUAN Wan-bing. Numerical Simulations of Current and Temperature Distribution of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based on the Theory of Electric-Chemical-Thermal Coupling [J]. Journal of Electrochemistry, 2020, 26(6): 789-796. |
[2] | FAN Yun, WANG Qi, LI Jun, LUO Jing-li, FU Xian-zhu. Research Progress in Ethane Dehydrogenation to Cogenerate Power and Value-Added Chemicals in Solid Oxide Fuel Cells [J]. Journal of Electrochemistry, 2020, 26(2): 243-252. |
[3] | WEI Tong, LI Jian, JIA Li-chao, CHI Bo, PU Jian. Perovskite Catalysts for Fuel Reforming in SOFC:A Review and Perspective [J]. Journal of Electrochemistry, 2020, 26(2): 198-211. |
[4] | LIU Jiang, YAN Xiao-min. Direct Carbon Solid Oxide Fuel Cells [J]. Journal of Electrochemistry, 2020, 26(2): 175-189. |
[5] | LV Yao, HUANG Bo*, GU Xi-zhi, HOU Chun-yi, HU Yi-xing, WANG Xiao-yin, ZHU Xin-jian. Fabrication and Characterization of the Ni-ScSZ Composite Anodes with a Cu-LSCM-CeO2 Catalyst Layer in the Thin Film SOFC [J]. Journal of Electrochemistry, 2014, 20(5): 470-475. |
[6] | LI Yang, HUANG Bo*, YUAN Meng, ZHANG Zhi-qiu, LIU Zong-yao, TANG Xu-chen, ZHU Xin-jian. Fabrication and Impedance Performance of Gradient LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2 Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2014, 20(1): 45-50. |
[7] | TONG Ze, YIN Yi-Mei, YIN Jie-Wei, MA Zi-Feng. Preparation and Characterization of a Novel Composite Electrolyte Ceria-Sulfate for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Electrochemistry, 2013, 19(3): 210-214. |
[8] | REN Rui-Xuan, HUANG Bo, ZHU Xin-Jian, HU Yi-Xing, DING Xiao-Yi, LIU Zong-Yao, LIU Ye-Bin. Fabrication and Performance of LaNi0.6Fe0.4O3-δ Cathode Modified by Coating with Gd0.2Ce0.8O2 for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2013, 19(3): 275-280. |
[9] | Sanping Jiang. Advances and Challenges of Intermediate Temperature Solid Oxide Fuel Cells: A Concise Review [J]. Journal of Electrochemistry, 2012, 18(5、6): 479-495. |
[10] | LIU Hang, HUANG Bo, ZHU Xin-Jian. Preparation and Characterization of the LaNi0.6Fe0.4O3?δ Cathode for Intermediate Temperature Solid Oxide Fuel Cell [J]. Journal of Electrochemistry, 2011, 17(4): 421-426. |
[11] | WANG Yun-yun1,HUANG Bo1*,ZHU Xin-jian1,HU Wan-qi2,YU Qing-chun1. Fabrication and Characterization of the Ni-ScSZ Composite Anodes with a LSCM-CeO_2 Catalyst Layer in Thin Film SOFC [J]. Journal of Electrochemistry, 2010, 16(1): 108-111. |
[12] | LIU Ren-zhu,HUANG Bo*,YE Xiao-feng,WANG Shao-rong,CAO Jia-di,NIE Huai-wen,WEN Ting-lian . Fabrication and Performance of Ni-ScSZ Cermet Anode Modified by Coating with Gd_(0.2)Ce_(0.8)O_2 for a SOFC [J]. Journal of Electrochemistry, 2007, 13(1): 50-57. |
[13] | Janina Molenda*,Jacek Marzec. Solid Oxide Fuel Cells-Materials and Prospects [J]. Journal of Electrochemistry, 2005, 11(4): 355-359. |
[14] | YANG Nai-tao~. Fabrication of Solid Oxide Fuel Cells and Analysis of Their Structure and Performance [J]. Journal of Electrochemistry, 2004, 10(3): 340-345. |
[15] | MA Gui_lin 1* ,JIA Ding_xian 1,QIU Li_gan 1,SHI Hui 2,CHEN Rong 1 . Ionic Conduction in Ba_(0.95)Ce_(0.9)Y_(0.1)O_(3-α)Solid Oxide and its Performance in Fuel Cell [J]. Journal of Electrochemistry, 2002, 8(3): 321-326. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||