Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (1): 73-83. doi: 10.13208/j.electrochem.181011
• Articles • Previous Articles Next Articles
ZHANG Chun-fang1, ZHAO Wen-gao1, ZHENG Shi-yao2, LI Yi-xiao2, GONG Zheng-liang1, ZHANG Zhong-ru2, YANG Yong1,2,*()
Received:
2018-10-11
Revised:
2019-01-04
Online:
2020-02-28
Published:
2019-01-15
Contact:
YANG Yong
E-mail:yyang@xmu.edu.cn
CLC Number:
ZHANG Chun-fang, ZHAO Wen-gao, ZHENG Shi-yao, LI Yi-xiao, GONG Zheng-liang, ZHANG Zhong-ru, YANG Yong. Research Progresses in Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials for Li-Ion Batteries[J]. Journal of Electrochemistry, 2020, 26(1): 73-83.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.181011
Tab. 1
Core-shell concentration gradient materials with different gradient designs
Gradient design of the shell (inside to outside) | Average composition | |||
---|---|---|---|---|
Reduce | Increase | Constant | ||
Ni | Mn | Co | LiNi0.5Co0.2Mn0.3O2[ Li[Ni0.75Co0.10Mn0.15]O2[ | |
Ni | Mn&Co | / | LiNi0.60Co0.15Mn0.25O2[ LiNi0.83Co0.07Mn0.10O2[ LiNi0.95Co0.025Mn0.025O2[ | |
Ni&Co | Mn | / | LiNi0.72Co0.18Mn0.10O2[ | |
Co | Ni&Mn | / | LiNixCo1-2xMnxO2 (x = 0.333, 0.4, 0.416, 0.45)[ | |
Ni | Co | Al | Li[Ni0.865Co0.121Al0.014]O2[ |
Fig. 4
(A) EPMA line scan data for the single-sloped full concentration gradient materials[26]. Reprinted with permission, Copyright 2012 Nature Publishing Group. (B) EPMA line scan data for the two-sloped full concentration gradient materials[52]. Reprinted with permission, Copyright 2015 Wiley-VCH.
Tab. 2
Comparison of properties of full concentration gradient materials with different nickel contents
Average composition | First discharge specific capacity/ (mAh·g-1) | Capacity retention rate |
---|---|---|
FCG60[ | 175(0.05 C) | 97% (3~4.3 V,0.05 C,50 cycles) |
FCG65[ | 194.2(0.1 C) | 95.8% (2.7~4.3 V,0.5 C,100 cycles) |
FCG70[ | 200(0.1 C) | 94% (2.7~4.3 V,0.5 C,100 cycles) 88% (Full cell,3~4.2 V,1 C,1500 cycles) |
FCG75[ | 215(0.2 C) | 90% (Full cell,3~4.2 V,1C,1000 cycles) |
FCG61[ | 188(0.1 C) | 65.1% (Full cell,3~4.2 V,1C,3000 cycles) |
Al~FCG61[ | 188(0.1 C) | 85.4% (Full cell,3~4.2 V,1C,3000 cycles) |
TSFCG65[ | 206.8(0.1 C) | 94.5% (2.7~4.3 V,0.5 C,100 cycles) |
TSFCG75[ | 222.2(0.1 C) | 93.5% (2.7~4.3 V,0.5 C,100 cycles) |
TSFCG85[ | 221(0.1 C) | 92% (2.7~4.3 V,0.5 C,100 cycles) |
Fig. 5
(A) EPMA composition profile of a single FCG61 cathode particle, (B) quantitative (at%) TEM EDS elemental mapping images of Ni, Co, and Mn for an Al-FCG61 particle, (C) TEM compositional line scan along a primary particle in Al-FCG61, and (D) bright field TEM image of an Al-FCG61 primary particle with its corresponding electron diffraction pattern[53]. Reprinted with permission, Copyright 2016 Wiley-VCH.
Fig. 6
Specific capacity vs. cycling stability plot of various layered cathodes, including gradient type NCMs and conventional NCAs and NCMs. The figure on the right graphically displays thermal stability measured using DSC of the different layered cathodes[55]. Reprinted with permission, Copyright 2017 American Chemical Society.
Fig. 7
Cross-sectional SEM images of (A, B) NCA82 and (C, D) TSFCG85 electrodes aged for 0 and 2 days at 55 °C after being charged to 4.3 V. High-magnification cross-sectional SEM images of the aged (E-G) NCA82 and (H-J) TSFCG85 cathodes aged for (H) 0, (I) 1, and (J) 3 days at 55 °C after being charged to 4.3 V[55]. Reprinted with permission , Copyright 2016 WILEY-VCH.
Fig. 8
(A) TEM image of the cycled TSFCG cathode in a pouch-type full cell for 1500 cycles, (B) electron diffraction pattern from a primary particle from the cycled TSFCG cathode in -120 zone of the layered structure. (C) TEM image of the cycled conventional cathode in a pouch-type full cell for 1500 cycles, (D) Broken-off primary particles from the cycled conventional cathode, and (E) electron diffraction pattern from the circled area in (B), indexed to 110 zone of the spinel phase[52]. Reprinted with permission, Copyright 2015 WILEY-VCH.
[1] |
Goodenough J B, Park K S . The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013,135(4):1167-1176.
doi: 10.1021/ja3091438 URL pmid: 23294028 |
[2] | Liu H S( 刘汉三), Yang Y( 杨勇), Zhang Z R( 张忠如 ), et al. New progress in studies of lithium nickel oxide as positive electrode materials of lithium ion batteris[J]. Journal of Electrochemistry( 电化学), 2001,7(2):145-154. |
[3] |
Reimers J N, Dahn J R . Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992,139(8):2091-2097.
doi: 10.1039/b901200a URL pmid: 19370225 |
[4] |
Chung K Y, Kim K B . Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes[J]. Electrochimica Acta, 2004, 49(20): 3327-3337.[4]
doi: 10.1016/j.electacta.2004.01.071 URL |
[5] | Feng Z S, Wang Y, Yang B C , et al. Research status of LiFePO4 cathode material for lithium-ion battery[J]. Journal of Functional Materials, 2011,42(4):581-584. |
[6] | Noh H J, Youn S, Chong S Y , et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2, ( x =1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013,233:121-130. |
[7] | Zhao W G, Zheng J M, Zou L F , et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 2018,8(19):1800297. |
[8] | Zou L F, Zhao W G, Liu Z Y , et al. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials[J]. ACS Energy Letters, 2018,3(10):2433-2440. |
[9] | Li X, Zhang K, Wang M S , et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustainable Energy & Fuels, 2017,2(2):413-421. |
[10] | Yano A, Aoyama S, Shikano M , et al. Surface structure and high-voltage charge/discharge characteristics of Aloxide coated LiNi1/3Co1/3Mn1/3O2 cathodes[J]. Journal of The Electrochemical Society, 2015,162(2):A3137-A3144. |
[11] |
Yano A, Ueda A, Shikano M , et al. Surface structure and high-voltage charging/discharging performance of low-content Zr-oxide-coated LiNi1/3Co1/3Mn1/3O2[J]. Journal of The Electrochemical Society, 2016,163(2):A75-A82.
doi: 10.1149/2.0211602jes URL |
[12] | Xiong X H, Wang Z X, Yin X , et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Materials Letters, 2013,110(11):4-9. |
[13] | Chen Y P, Zhang Y, Chen B J , et al. An approach to application for LiNi0.6Co0.2Mn0.2O2, cathode material at high cutoff voltage by TiO2, coating[J]. Journal of Power Sources, 2014,256(12):20-27. |
[14] |
Chen Z H, Qin Y, Amine K , et al. Role of surface coating on cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010,20(36):7606-7612.
doi: 10.1039/c6sm01441k URL pmid: 27539982 |
[15] | Sun Y K, Kim D H, Chong S Y , et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Advanced Functional Materials, 2010,20(3):485-491. |
[16] | Li J W( 李佳玮), Li Y( 厉英), Kong Y Z( 孔亚州 ). Recent progress in core-shell ternary cathode material for lithium-ion battery[J]. Materials Review: Nano and New Materials Album (材料导报: 纳米与新材料专辑), 2016(S1):187-190. |
[17] |
Sun Y K, Myung S T, Kim M H , et al. Synjournal and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries[J]. Journal of the American Chemical Society, 2005,127(38):13411-13418.
doi: 10.1021/ja053675g URL pmid: 16173775 |
[18] | Cho S W, Kim G O, Ju J H , et al. X-ray absorption spectroscopy studies of the Ni ion of Li(Ni0.8Co0.15Al0.05)0.8-(Ni0.5Mn0.5)0.2O2, with a core-shell structure and LiNi0.8-Co0.15Al0.05O2, as cathode materials[J]. Materials Research Bulletin, 2012,47(10):2830-2833. |
[19] |
Sun Y K, Myung S T, Park B C , et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009,8(4):320-324.
doi: 10.1038/nmat2418 URL pmid: 19305398 |
[20] |
Sun Y K, Chen Z, Noh H J , et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012,11(11):942-947.
doi: 10.1038/nmat3435 URL pmid: 23042415 |
[21] | Song S L( 宋顺林), Zhang P L( 张朋立), Zheng C C( 郑长春 ), et al. Research progress on structural design of ternary cathode material[J]. Guangdong Chemical Industry( 广东化工), 2017,44(18):114-116. |
[22] | Michalska M, Lipinska L, Mirkowska M , et al. Nanocrystalline lithium manganese oxide spinels for Li-ion batteries-sol-gel synjournal and characterization of their structure and selected physical properties[J]. Solid State Ionics, 2011,188(1):160-164. |
[23] | Hou X H, Wang J Y, Zhang M , et al. Facile spray-drying/pyrolysis synjournal of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries[J]. RSC Advances , 2014,4(65):34615-34622. |
[24] |
Bommel A, Dahn J R . Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia[J]. Chemistry of Materials, 2009,21(8):1500-1503.
doi: 10.1021/cm803144d URL |
[25] |
Sun Y K, Lee B R, Noh H J , et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2011,21(27):10108-10112.
doi: 10.1039/c0jm04242k URL |
[26] |
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373 URL pmid: 26017733 |
[27] | Voorhees P W . The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985,38(1/2):231-252. |
[28] |
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373 URL pmid: 26017733 |
[29] | Sun Y K, Kim D H, Jung H G , et al. High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010,55(28):8621-8627. |
[30] | Yoon C S, Kim S J, Kim U H , et al. Microstructure evolution of concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 cathode for lithium-ion batteries[J]. Advanced Functional Materials, 2018,28(28):1802090. |
[31] |
Yoon S J, Myung S T, Noh H J , et al. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries[J]. ChemSusChem, 2014,7(12):3295-3303.
doi: 10.1002/cssc.201402389 URL pmid: 25044175 |
[32] | Chen X L, Jia X B, Qu Y Y , et al. High-voltage performance of concentration-gradient Li[Ni0.6Co0.2Mn0.2]O2 layered oxide cathode materials for lithium batteries[J]. New Journal of Chemistry, 2018,42(8):5868-5874. |
[33] | Cheng X L, Li D, Mo Y , et al. Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018,261:513-520. |
[34] | Du K, Hua C S, Tan C P , et al. A high powered concentration-gradient Li(Ni0.85Co0.12Mn0.03)O2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 2014,263:203-208. |
[35] | Jun D W, Chong S Y, Kim U H , et al. High-energy density core-shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017,29(12):5048-5052. |
[36] | Sun Y K, Kim D H, Chong S Y , et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Advanced Functional Materials, 2010,20(3):485-491. |
[37] | Huang Z L, Gao J, He X M , et al. Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors[J]. Journal of Power Sources, 2012,202:284-290. |
[38] | Park K J, Choi M J, Maglia F , et al. High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries[J]. Advanced Energy Materials, 2018,8(19):1703612. |
[39] | Chen W H, Li Y Y, Zhao J J , et al. Controlled synjournal of concentration gradient LiNi0.84Co0.10Mn0.04Al0.02O1.90F0.1 with improved electrochemical properties in Li-ion batteries[J]. RSC Advances, 2016,6(63):58173-58181. |
[40] |
Shi J L, Qi R, Zhang X D , et al. A high thermal and air stability cathode material with concentration-gradient buffer for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017,9(49):42829-42835.
doi: 10.1021/acsami.7b14684 URL pmid: 29148695 |
[41] |
Zhang J C, Yang Z Z, Gao R , et al. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Applied Materials & Interfaces, 2017,9(35):29794-29803.
doi: 10.1021/acsami.7b08802 URL pmid: 28799736 |
[42] |
Noh H J, Ju J W, Sun Y K , et al. Comparison of nanorod structured Li[Ni0.54Co0.16Mn0.30]O2 with conventional cathode materials for Li-ion batteries[J]. ChemSusChem. 2014,7(1):245-252.
doi: 10.1002/cssc.201300379 URL pmid: 24127348 |
[43] | Noh H J, Chen Z, Yoon C S , et al. Cathode material with nanorod structure-an application for advanced high-energy and safe lithium batteries[J]. Chemistry of Materials, 2013,25(10):2109-2115. |
[44] | Sun Z, Wang D, Fan Y , et al. Improved performances of LiNi0.6Co0.15Mn0.25O2 cathode material with full concentration-gradient for lithium ion batteries[J]. RSC Advances, 2016,6(105):103747-103753. |
[45] |
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373 URL pmid: 26017733 |
[46] | LI Y, XU R, REN Y , et al. Synjournal of full concentration gradient cathode studied by high energy X ray diffraction[J]. Nano Energy, 2016,19:522-531. |
[47] | Hou P Y, Zhang L Q, Gao X P . A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014,2(40):17130-17138. |
[48] | Erickson E M, Bouzaglo H, Sclar H , et al. Synjournal and electrochemical performance of nickel-rich layered-structure LiNi0.65Co0.08Mn0.27O2 cathode materials comprising particles with Ni and Mn full concentration gradients[J]. Journal of The Electrochemical Society, 2016,163(7):A1348-A1358. |
[49] |
Liang L W, Hu G R, Cao Y B , et al. Synjournal and characterization of full concentration-gradient LiNi0.7Co0.1Mn0.2-O2 cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015,635:92-100.
doi: 10.1021/nl5022859 URL pmid: 24960550 |
[50] | Chae C, Noh H J, Lee J K , et al. A High-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode[J]. Advanced Functional Materials, 2014,24(20):3036-3042. |
[51] | Hua C S, Du K, Tan C P , et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys And Compounds, 2014,614:264-270. |
[52] | Ju J W, Lee E J, Yoon C S , et al. Optimization of layered cathode material with full concentration gradient for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2014,118(1):175-182. |
[53] | Kim U, Lee E, Yoon C S , et al. Lithium-ion batteries: compositionally graded cathode material with long-term cycling stability for electric vehicles application[J]. Advanced Energy Materials, 2016,6(5):1601417. |
[54] | Kim U H, Myung S T, Sun Y K , et al. Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries[J]. ACS Energy Letters, 2017,2(8):1848-1854. |
[55] | Lim B, Yoon S, Park K , et al. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J]. Advanced Functional Materials, 2015,25(29):4673-4680. |
[56] | Chong S Y, Park K J, Kim U H , et al. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles[J]. Chemistry of Materials, 2017,29(24):10436-10445. |
[57] | Park K J, Lim B B, Choi M H , et al. A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(44):22183-22190. |
[58] | Lee J H, Yoon C S, Hwang J Y , et al. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode[J]. Energy & Environmental Science, 2016,9(6):2152-2158. |
[59] | Park K J, Lim B B, Choi M H , et al. A high-capacity Li-[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(44):22183-22190. |
[60] | Lee E J, Noh H J, Yoon C S , et al. Effect of outer layer thickness on full concentration gradient layered cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2015,273:663-669. |
[1] | Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan. Facile One-Step Solid-State Synthesis of Ni-Rich Layered Oxide Cathodes for Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2022, 28(8): 2112131-. |
[2] | Rui-Qi Guo, Feng Wu, Xin-Ran Wang, Ying Bai, Chuan Wu. Multi-Electron Reaction-Boosted High Energy Density Batteries: Material and System Innovation [J]. Journal of Electrochemistry, 2022, 28(12): 2219011-. |
[3] | Tingzheng Hou, Xiang Chen, Lu Jiang, Cheng Tang. Advances and Atomistic Insights of Electrolytes for Lithium-Ion Batteries and Beyond [J]. Journal of Electrochemistry, 2022, 28(11): 2219007-. |
[4] | Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng. Oligomeric Ionic Liquids: Bulk, Interface and Electrochemical Application in Energy Storage [J]. Journal of Electrochemistry, 2022, 28(11): 2219002-. |
[5] | Chen-Xu Luo, Chen-Guang Shi, Zhi-Yuan Yu, Ling Huang, Shi-Gang Sun. Synthesis of Lithium-Rich Manganese-Based Layered Cathode Materials and Study on Its Structural Evolution of First Cycle Overcharge [J]. Journal of Electrochemistry, 2022, 28(1): 2006131-. |
[6] | Li-Juan Li, Zhen-Dong Zhu, Juan Dai, Rong-Rong Wang, Wen Peng. A Comparison in Structural Transformation of Li[NixCoyMnz]O2 (x = 0.6, 0.85) Cathode Materials in Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2021, 27(4): 405-412. |
[7] | Xu Hou, Xin He, Jie Li. Preparation and Characterization of “Water-in-Salt” Polymer Electrolyte for Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2021, 27(2): 202-207. |
[8] | CHANG Zeng-hua, HAN Fu-juan, YANG Xi-xin, WANG Jian-tao, LU Shi-gang. Cycling Performance and Solid-Electrolyte-Interphase Synergic Formation of Silicon Nanoparticles in the Concentrated Electrolyte with Additives [J]. Journal of Electrochemistry, 2020, 26(5): 759-771. |
[9] | LI Pan, LIU Jian, SUN Wei-yi, LI Hai-xia, TAO Zhan-liang. Synthesis of Flower-Like Vanadium Disulfide for Lithium Storage Application [J]. Journal of Electrochemistry, 2019, 25(1): 104-111. |
[10] | WANG You, ZENG Yi-wen, ZHONG Xing, LIU Xing, TANG Quan. Synthesis and Electrochemical Properties of Li3V2(BO3)3/C Anode Materials for Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2018, 24(2): 174-181. |
[11] | YANG Ya-xiong, MA Rui-jun, GAO Ming-xia, PAN Hong-ge, LIU Yong-feng. Electrochemical Performance of Crystalline Li12Si7 as Anode Material for Lithium Ion Battery [J]. Journal of Electrochemistry, 2016, 22(5): 521-527. |
[12] | QIN Lai-fen, XIA Yong-gao*, CHEN Li-peng, HU Hua-sheng, XIAO Feng, LIU Zhao-ping*. Research Status and Application Prospects of LiMnPO4 as A New Generation Cathode Material for Lithium-ion Batteries [J]. Journal of Electrochemistry, 2015, 21(3): 253-267. |
[13] | HAO Shi-ji, LI Chun-li, ZHU Kai, ZHANG Ping, JIANG Zhi-yu*. Preparation of High Performance Porous Silicon Powders by Etching Al-Si Alloy in Acid Solution for Lithium Ion Battery [J]. Journal of Electrochemistry, 2014, 20(1): 1-4. |
[14] | CHEN Yu-long, HU Ren-zong, LIU Hui, SUN Wei, ZHU Min*. Electrochemical Performance of Si-C Composites Prepared by Discharge-Plasma Assisted Milling [J]. Journal of Electrochemistry, 2014, 20(1): 51-55. |
[15] | WANG Ming-e, LIU Jing-yuan, HOU Meng-yan, XIA Yong-yao*. Preparation of the Particle Size Controllable LiFePO4/C and Its Electrochemical Profile Characterization [J]. Journal of Electrochemistry, 2013, 19(6): 550-557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||