Journal of Electrochemistry ›› 2017, Vol. 23 ›› Issue (2): 130-140.doi: 10.13208/j.electrochem.161241
• Special Issue in Honor of Professor Zhaowu Tian on His 90th Birthday • Previous Articles Next Articles
Hisham Hamzah 1, Guy Denuault 1, Philip Bartlett 1*, Aleksandra Pinczewska 2, Jeremy Kilburn 3
Received:
2016-12-01
Revised:
2017-01-21
Online:
2017-04-28
Published:
2017-01-29
Contact:
Philip Bartlett
E-mail:p.n.bartlett@soton.ac.uk
Supported by:
H. Hamzah would like to thank the Majlis Amanah Rakyat Malaysia (MARA) for the PhD scholarship. P. Bartlett gratefully acknowledges receipt of a Wolfson Research Merit award.
CLC Number:
Support info:
Hisham Hamzah,Guy Denuault,Philip Bartlett,Aleksandra Pinczewska,Jeremy Kilburn. Electrografting of Mono-N-Boc-Ethylenediamine from an Acetonitrile/Aqueous NaHCO3 Mixture[J]. Journal of Electrochemistry, 2017, 23(2): 130-140.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.161241
[1] Adenier A, Chehimi M M, Gallardo I, et al. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces[J]. Langmuir, 2004, 20(19): 8243-8253. [2] Barbier B, Pinson J, Desarmot G, et al. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites[J]. Journal of the Electrochemical Society, 1990, 137(6): 1757-1764. [3] Downard A J. Electrochemically assisted covalent modification of carbon electrodes[J]. Electroanalysis, 2000, 12(14): 1085-1096. [4] Bélanger D, Pinson J. Electrografting: a powerful method for surface modification[J]. Chemical Society Reviews, 2011, 40(7): 3995-4048. [5] Deinhammer R S, Ho M, Anderegg J W, et al. Electrochemical oxidation of amine-containing compounds: a route to the surface modification of glassy carbon electrodes[J]. Langmuir, 1994, 10(4): 1306-1313. [6] Liu J, Dong S. Grafting of diaminoalkane on glassy carbon surface and its functionalization[J]. Electrochemistry Communications, 2000, 2(10): 707-712. [7] Holm A H, Vase K H, Winther-Jensen B, et al. Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes[J]. Electrochimica Acta, 2007, 53(4): 1680-1688. [8] Buriez O, Labbé E, Pigeon P, et al. Electrochemical attachment of a conjugated amino–ferrocifen complex onto carbon and metal surfaces[J]. Journal of Electroanalytical Chemistry, 2008, 619–620(0): 169-175. [9] Buriez O, Podvorica F I, Galtayries A, et al. Surface grafting of a π-conjugated amino-ferrocifen drug[J]. Journal of Electroanalytical Chemistry, 2013, 699(0): 21-27. [10] Tanaka M, Sawaguchi T, Sato Y, et al. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives[J]. Langmuir, 2011, 27(1): 170-178. [11] Geneste F, Moinet C. Electrochemically linking TEMPO to carbon via amine bridges[J]. New Journal of Chemistry, 2005, 29(2): 269-771. [12] Nasraoui R, Bergamini J-F, Ababou-Girard S, et al. Sequential anodic oxidations of aliphatic amines in aqueous medium on pyrolyzed photoresist film surfaces for the covalent immobilization of cyclam derivatives[J]. Journal of Solid State Electrochemistry, 2011, 15(1): 139-146. [13] Chrétien J-M, Ghanem M A, Bartlett P N, et al. Covalent tethering of organic functionality to the surface of glassy carbon electrodes by using electrochemical and solid-phase synthesis methodologies[J]. Chemistry a European Journal, 2008, 14(8): 2548–2556. [14] Chrétien J-M, Ghanem M A, Bartlett P N, et al. Covalent modification of glassy carbon surfaces by using electrochemical and solid-phase synthetic methodologies: application to bi- and trifunctionalisation with different redox centres[J]. Chemistry a European Journal, 2009, 15(44): 11928-11936. [15] Ghanem M A, Chrétien J-M, Kilburn J D, et al. Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH[J]. Bioelectrochemistry. 2009, 76(1-2): 115-125. [16] Ghanem M A, Chrétien J-M, Pinczewska A, et al. Covalent modification of glassy carbon surface with organic redox probes through diamine linkers using electrochemical and solid-phase synthesis methodologies[J]. Journal of Materials Chemistry, 2008, 18(41): 4917-4927. [17] Sosna M, Chretien J-M, Kilburn J D, et al. Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation[J]. Physical Chemistry Chemical Physics. 2010, 12(34): 10018-10026. [18] Pinczewska A, Sosna M, Bloodworth S, et al. High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation[J]. Journal of the American Chemical Society, 2012, 134(43): 18022-18033. [19] Groppi J, Bartlett P N, Kilburn J D. Toward the control of the creation of mixed monolayers on glassy carbon surfaces by amine oxidation[J]. Chemistry a European Journal, 2016, 22(3): 1030-1036. [20] Baranton S, Bélanger D. Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations[J]. Journal of Physical Chemistry B, 2005, 109(51): 24401-24410. [21] Saby C, Ortiz B, Champagne G Y, et al. Electrochemical modification of glassy carbon electrode using aromatic diazonium salts .1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups[J]. Langmuir, 1997, 13(25): 6805-6813. [22] Ghanem M A, Kocak I, Al-Mayouf A, et al. Covalent modification of carbon nanotubes with anthraquinone by electrochemical grafting and solid phase synthesis[J]. Electrochimica Acta. 2012, 68: 74-80. [23] Bhugun I, Savéant J M. Derivatization of surfaces and self-inhibition in irreversible electrochemical reactions - cyclic voltammetry and preparative-scale electrolysis[J]. Journal of the Electrochemical Society, 1995, 395: 127-131. [24] Allongue P, Delamar M, Desbat B, et al. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts[J]. Journal of the American Chemical Society, 1997, 119(1): 201-207. |
[1] | MA Wu-wei, CHANG Qi-gang, SHI Xiong-fang, TONG Yan-bin, ZHOU Li, YE Bang-ce, LU Jian-jiang, ZHAO Jin-hu. Novel Electrochemical Sensor Based on Integration of Nanoporous Gold with Molecularly Imprinted Polymer for Detection of Arsenic Ion(III) [J]. Journal of Electrochemistry, 2020, 26(6): 900-910. |
[2] | XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites [J]. Journal of Electrochemistry, 2020, 26(6): 890-899. |
[3] | JIN Tong-zheng, YANG Yu-meng, FAN Sheng-hui, WEI Guo-ying, ZHANG Zhao. Synergistic Effect of Dissolving O2 and Wavelength on the Photo-Assisted Anodic Deposition of CeO2 Thin Films [J]. Journal of Electrochemistry, 2020, 26(6): 868-875. |
[4] | WANG Yi-jie, NIU Dong-fang, ZHANG Xin-sheng. Effect of 18-Crown-6 Additive on Chromium Electrodeposition in Ionic Liquid [J]. Journal of Electrochemistry, 2020, 26(6): 859-867. |
[5] | DUAN Ming-tao, MENG Yan-shuang, ZHANG Hong-shuai. Preparations and Sodium Storage Properties of Ni3S2@CNT Composite [J]. Journal of Electrochemistry, 2020, 26(6): 850-858. |
[6] | WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling [J]. Journal of Electrochemistry, 2020, 26(6): 777-788. |
[7] | YANG Na-chuan, WANG Yu, SHUAI Yi, CHEN Kang-hua. Preparations and Properties of Low Cost Sulfide Solid Electrolytes Li6-xPS5-xClx [J]. Journal of Electrochemistry, 2020, 26(6): 885-889. |
[8] | ZHANG Ze-Yang, SUN Lan, LIN Chang-Jian. Preparations and Photoelectrochemical Performances of RGO-TiO2 Nanotubes Arrays [J]. Journal of Electrochemistry, 2020, 26(6): 844-849. |
[9] | LOU Jing-yuan, YOU Dong-jiang, LI Xue-jing. Step-by-Step Modification of Graphite Felt Electrode for Vanadium Redox Flow Battery [J]. Journal of Electrochemistry, 2020, 26(6): 876-884. |
[10] | WU Kai. Preparation and Process Optimization of Cathode Materials for Lithium-Sulfur Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 825-833. |
[11] | YU Cheng-rong, ZHU Jian-guo, JIANG Cong-ying, GU Yu-chen, ZHOU Ye-xin, LI Zhuo-bin, WU Rong-min, ZHONG Zheng, GUAN Wan-bing. Numerical Simulations of Current and Temperature Distribution of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based on the Theory of Electric-Chemical-Thermal Coupling [J]. Journal of Electrochemistry, 2020, 26(6): 789-796. |
[12] | ZHU Chang, CHEN Wei, SONG Yan-fang, DONG Xiao, LI Gui-hua, WEI Wei, SUN Yu-han. Effect of Reaction Conditions on Cu⁃Catalyzed CO2 Electroreduction [J]. Journal of Electrochemistry, 2020, 26(6): 797-807. |
[13] | WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang. Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2020, 26(6): 815-824. |
[14] | Chen Pin-song, Hu Yi-tao, Zhang Xin-yi, Shen Pei-kang. Effect of Stereotaxically-Constructed Graphene on the Negative Electrode Performance of Lead-Acid Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 834-843. |
[15] | SHEN Jing, WANG Zi-ming, ZHENG Da-jiang, SONG Guang-ling. Pitting Behaviors of Passivated and Trans-Passivated 304 Stainless Steel [J]. Journal of Electrochemistry, 2020, 26(6): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||