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Experimental Section

Materials. Cobalt(Il) nitrate hexahydrate urea ONHa, 99%), acetone

roxide (KOH, >99%) were

and water for 15 min respectively and then pretreated

90 min to achieve the surface hydroxylation of CFP. After

various integrated c8
Characterization ofimaterials

Scanning electron microscopy (SEM) were carried out using a Hitachi SU-8010 field-emission
scanning electron microscope operating at an acceleration voltage of 5 kV to probe the morphology of the
catalysts. Transmission electron microscopy (TEM) images, High-resolution TEM (HRTEM) images,
scanning TEM (STEM) images, and EDX elemental maps were obtained using an FEI Talos F200S
transmission electron microscope accompanied by two energy disperse X-ray spectrometers (Super-EDS)
operated at 200 kV. The specimens for TEM observations were carefully scratched from the CFP support
and sonicated fully before dropping them onto ultrathin carbon-coated copper grids with 200 mesh. X-ray
photoelectron spectroscopy (XPS) measurements were performed using a ESCALAB 250Xi spectrometer



with a hemispherical energy analyzer, employing a monochromatized microfocused Al-Ka (hv = 1486.58
eV) X-ray source to analyze the surface composition and chemical states the catalysts. The binding
energies (BEs) of the core levels were calibrated by setting the adventitious Cl1s peak at 284.8 eV. The X-
ray diffraction (XRD) patterns were collected using a Rigaku SmartLab diffractometer equipped with a
Cu Ka X-ray source (A = 1.5406 A), operating at 40 kV and 100 mA at a scanning rate of 0.06° s from
10 to 90°. Electron paramagnetic resonance (EPR) analyses were conducted on a Bruker EMX PLUS.
The elemental composition of the samples was determined by EDX quantitative analysis and inductively
coupled plasma atomic emission spectrometry (ICP-AES, Prodigy, Leeman Labs Inc., A = 165-800 nm,

As =200 nm) measurements after dissolving the sample in aqua regia. T ity test was conducted
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Figure S1. (a) SEM image and (b) XRD pattern of Carbon ﬁbxy
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Figure S2. (a, b) SEM, (c) TEM images and (d) XRD pattern of the Co(CO3)o.s(OH)-0.11H,O NNs/CFP.
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Figure S3. EDX spectra of the CoP NNs/CFP.
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Figure S4. (a) The XPS survey spectrum and the high-resolution (b) Co 2p and (c¢) P 2p XPS spectra of the CoP NNs/CFP.



Figure S5. HRTEM image of the CoOOOH LPNAs/CFP. The insets s
patterns.
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Figure S7. The XPS survey spectrum of (a) CoOOH bulk and (b) CoOOH LPNAs/CFP. The XPS survey spectrum of
CoOOH LPNAs/CFP shows a very weak P characteristic peak. According to the XPS characterization results, the Co/P
atomic ratio is determined to be 34.5:1, indicating that only a trace amount of phosphorus remains in the CoOOH structure.
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Figure S8. High-resolution P 2p XPS spectra of CoOOOH LPNAs/CFP. shows that
the Co—P bonds have completely disappeared, and only a weak t the residual
phosphorus does not incorporate into the CoOOH lattice as d « species. The
trace amount of POy (approximately 0.98% of P atomic % in i heni infllience the electronic

structure and catalytic performance of the material.
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Figure S9. Polarization curves of CoOOOH LPNAs/CFP and RuO»/CFP for OER recorded in 1 M KOH.
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Figure S10. Cyclic voltammograms of the (a) CoOOH LPNAs/CFP and (b)

used to estimate the double layer capacitances (Car). Sweep rates at 10, 20, 40,
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Figure S11. Specific activi sed on ECSA of the CoOOH LPNAs/CFP and CoOOH bulk/CFP.
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Figure S12. Polarization curves of CoOOOH LPNAs/CFP correspondiig to st and 4000
1 M KOH with 0.33 M urea.
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Figure S13. (a) The G ce of the mixture after the UOR reaction recorded by CoOOH LPNAs/CFP, as compared to

several standard gases. (b) IC trace of the mixture after the UOR reaction recorded by CoOOH LPNAs/CFP, as

compared to several standard ions.



Figure S14. (a,b) SEM, (| an HRTEM images OH LPNASs/CFP after a stability test for 200 h.
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Figure S15. (a) XRD spectra and (b) high-resolution Co 2p XPS spectra of the CoOOOH LPNAs/CFP after a stability test

for 200 h.
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Figure S16. The wettability test of CoOOH LPNAs/CFP after a stability test for 2

V4

Figure S17. The geomet@@structures of OOH unit@ll, (b) slab model for CoOOH (001) facet and (c) slab model
for Oy-CoOOH (001) face
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Figure S18. The o s of UOR elementary steps on (a) CoOOH (001) and (b) O,-CoOOH
(001). The pink, red s H, O, and Co atoms, respectively.

11



Figure S19. Total DOS on CoOOH (001) and O,-CoOOH (001) surfaces?

Table S1. Comparison of the electrocatalytic activity of
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Table S2. The atomic percentage of Co and O in CoOOH before and after UOR.

Pristine 33.7 66.3
After UOR 33.1 66.9
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