Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (6): 900-910. doi: 10.13208/j.electrochem.191221
• Articles • Previous Articles Next Articles
MA Wu-wei1,3, CHANG Qi-gang1,*, SHI Xiong-fang3, TONG Yan-bin1, ZHOU Li1, YE Bang-ce1,2, LU Jian-jiang1, ZHAO Jin-hu1
Received:
2019-12-21
Revised:
2020-06-03
Online:
2020-12-28
Published:
2020-06-04
Contact:
CHANG Qi-gang
CLC Number:
MA Wu-wei, CHANG Qi-gang, SHI Xiong-fang, TONG Yan-bin, ZHOU Li, YE Bang-ce, LU Jian-jiang, ZHAO Jin-hu. Novel Electrochemical Sensor Based on Integration of Nanoporous Gold with Molecularly Imprinted Polymer for Detection of Arsenic Ion(III)[J]. Journal of Electrochemistry, 2020, 26(6): 900-910.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.191221
Fig. 2
SEM images of bare ITO (A), NPG/ITO (B), MIP/NPG/ITO before (E) and after (G) extraction of As3+. EDS spectra of NPG/ITO (C), MIP/NPG/ITO before (F) and after (H) extraction of As3+. Cyclic voltammograms of NPG/ITO in 0.5 mol·L-1 H2SO4 solution (D). Cyclic voltammograms for the electrochemical polymerization of NPG/ITO in a mixed solution containing 1 mmol·L-1 As3+ and 4 mmol L-1 o-phenylenediamine (I).
Tab. 1
Determination of As3+ in several real samples by the proposed method (n=3).
Sample | Addeda/(μg·L-1) | Total found/(μg·L-1)a | Recovery/% |
---|---|---|---|
Landscape river water | - | 7.92 ± 0.22 | - |
10 | 17.87 ± 0.06 | 99.36 | |
20 | 28.19 ± 0.13 | 103.41 | |
30 | 37.23 ± 0.15 | 91.29 | |
Groundwater | - | 8.67 ± 0.14 | - |
10 | 18.96 ± 0.07 | 103.34 | |
20 | 27.98 ± 0.12 | 92.04 | |
30 | 39.47 ± 0.04 | 109.23 | |
Tap Water | - | 4.87 ± 0.09 | - |
10 | 14.98 ± 0.03 | 102.26 | |
20 | 24.39 ± 0.05 | 90.14 | |
30 | 35.31 ± 0.16 | 109.03 | |
Domestic sewage | - | 6.27 ± 0.18 | - |
10 | 15.62 ± 0.27 | 89.63 | |
20 | 26.78 ± 0.04 | 108.13 | |
30 | 36.24 ± 0.12 | 99.52 |
[1] |
Majid E, Hrapovic S, Liu Y, et al.Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis[J]. Analytical Chemistry, 2006, 78(3): 762-769.
URL pmid: 16448049 |
[2] | Wang J(王晶). Development and application of a novel ion-imprinted electrochemical sensor[D]. Jishou University(吉首大学), 2017. |
[3] | Mandal B K, Suzuki K T.Arsenic round the world: a review[J]. Talanta, 2002, 58(1): 230-235. |
[4] | Salimi A, Marnkhezri H, Halla R, et al.Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles[J]. Sensors & Actuators B - Chemical, 2008, 129(1): 246-254. |
[5] | Chakraborti D, Rahman M M, Paul K, et al.Arsenic calamity in the Indian subcontinent: What lessons have been learned[J]. Talanta, 2002, 58(1): 13-22. |
[6] | Yang M, Chen X, Liu J H, et al.Enhanced anti-interference on electrochemical detection of arsenite with nanoporous gold in mild condition[J]. Sensors and Actuators B - Chemical, 2016, 234: 404-411. |
[7] | Welna M, Szymczycha-Madeja A, Pohl P.Improvement of determination of trace amounts of arsenic and selenium in slim coffee products by HG-ICP-OES[J]. Food Analytical Methods, 2014, 7(5): 1016-1023. |
[8] | Male K B, Sabahudin H, Santini J M, et al.Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes[J]. Analytical Chemistry, 2007, 79(20): 7831-7837. |
[9] | Pereira F J, Vázquez M D, Deb$\acute{a}$n L, et al.Spectrometric characterisation of the solid complexes formed in the interaction of cysteine with As(III), Th(IV) and Zr(IV)[J]. Polyhedron, 2014, 76(8): 71-80. |
[10] | Ni Z, Na F, Fang Z T, et al.Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves[J]. Food Chemistry, 2011, 124(3): 1185-1188. |
[11] | Yang M, Chen X, Jiang T J, et al.Electrochemical detection of trace arsenic(iii) by nanocomposite of nanorod like α-MnO2 decorated with ~5 nm Au nanoparticles: Considering the change of arsenic speciation[J]. Analytical Chemistry, 2016, 88(19): 9720-9728. |
[12] | Wang D Y, Wang J, Zhang J J, et al.Novel electrochemical sensing platform based on integration of molecularly imprinted polymer with Au@Ag hollow nanoshell for determination of resveratrol[J]. Talanta, 2019, 196: 479-485. |
[13] | Song Z(宋卓), Feng L(冯流), Zhang T Y(张添俞). Preparation and performance evaluation of arsenic ion imprinted polymer[J]. Techniques and Equipment for Environmental Protection, 2014, 5: 2141-2145. |
[14] | Li Y C, Liu J, Liu M H, et al. Fabrication of ultra-sensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modified graphene@carbon nanotube foam[J]. Electrochemistry Communications, 2016, 64: 42-45. |
[15] | Xu L J(徐丽娟), Li J S(李锦书), Lu X Q(卢小泉), et al.Development and application of molecularly imprinted copper ion voltammetry sensor[J]. Chemical Research and Application(化学研究与应用), 2013, 25(10): 1351-1356. |
[16] |
Li Y C, Song H, Zhang L, et al.Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level[J]. Biosensors and Bioelectronics, 2016, 78: 308-314.
URL pmid: 26630285 |
[17] |
Li Y C, Liu Y, Yang Y, et al.Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15474-15480.
URL pmid: 26126643 |
[18] |
Zhang J J, Liu J, Zhang Y, et al.Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer[J]. Microchimica Acta, 2018, 185(1): 78.
URL pmid: 29594562 |
[19] | Chen C F, Wang Y Z, Ding S H, et al.A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine[J]. Microchemical Journal, 2019: 191-197. |
[20] | Bala A, Pietrzak M, Zajda J, et al.Further studies on application of Al(III)-tetraazaporphine in membrane-based electrochemical sensors for determination of fluoride[J]. Sensors & Actuators B - Chemical, 2015, 207: 1004-1009. |
[21] | Wang M L, Gao Y Q, Sun Q, et al.Ultrasensitive and simultaneous determination of the isomers of Amaranth and Ponceau 4R in foods based on new carbon nanotube/polypyrrole composites[J]. Food chemistry, 2015, 172: 873-879. |
[22] |
Cui G L, Zhang M Z, Zou G T.Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application[J]. Scientific Reports, 2013, 3: 1250.
URL pmid: 23409241 |
[23] | Jiang D L, Zhang Y, Chu H Y, et al.N-doped graphene quantum dots as an effective photocatalyst for the photochemical synjournal of silver deposited porous graphitic C3N4 nanocomposites for nonenzymatic electrochemical H2O2 sensing[J]. RSC Advances, 2014, 4(31): 16163-16171. |
[24] | Ananthi A, Kumar S S, Phani K L.Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid[J]. Ele-ctrochimica Acta, 2015, 151(5): 584-590. |
[25] | Wang J P, Hua G, Sun F L, et al.Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide[J]. Sensors & Actuators B Chemical, 2014, 191(2): 612-618. |
[26] |
Fan H X, Guo Z K, Gao L, et al.Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline-Au asymmetric multicomponent nanoparticles[J]. Biosensors & Bioelectronics, 2015, 64: 51-56.
URL pmid: 25194795 |
[27] | Chang J K, Wu C M, Sun I W.Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications[J]. Journal of Materials Chemistry, 2010, 20(18): 3729-3735. |
[28] |
Lu W B, Qin X Y, Asiri A M, et al.Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection[J]. Analyst, 2013, 138(2): 417-420.
doi: 10.1039/c2an36138h URL pmid: 23162811 |
[29] | Yang J, Hu Y, Li Y C.Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection[J]. Biosensors and Bioelectronics, 2019, 135: 224-230. |
[30] | Li Y C, Liu Y, Liu J, et al.Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors[J]. Scientific Reports, 2015, 5(1): 7699-7699. |
[31] | Lu Jie(刘杰). Preparation of new nano-materials and their applications in electrochemical sensors[D]. Shihezi University(石河子大学), 2017. |
[32] | Liu Y(刘媛). Preparation of several nano-composite materials and their applications in the field of sensor[D]. Shihezi University(石河子大学), 2015. |
[33] | Yu F(余芬), Lai G Y(赖广运), Li R(李锐), et al.Atomic fluorescence spectrometric determination of arsenic in water treatment agents[J]. Chemical Management(化工管理), 2017, 6: 178. |
[1] | XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites [J]. Journal of Electrochemistry, 2020, 26(6): 890-899. |
[2] | WANG Lai-yu, XI Xin, WU Dong-qing, LIU Xiong-yu, JI Wei, LIU Rui-li. Ordered Mesoporous Carbon/Graphene/Nickel Foam for Flexible Dopamine Detection with Ultrahigh Sensitivity and Selectivity [J]. Journal of Electrochemistry, 2020, 26(3): 347-358. |
[3] | DAI Wan-lin, LU Zhi-wei, YE Jian-shan. Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated with CuxO Nanocomposites: A Novel Electrode Substrate for Non-Enzymatic Glucose Sensors [J]. Journal of Electrochemistry, 2019, 25(2): 260-269. |
[4] | DONG Peng-fei, LI Na, ZHAO Hai-yan, CUI Min, ZHANG Cong, REN Ju-jie,JI Xue-ping. Synthesis of Keggin Polyoxometalates Modified Carbon Paste Electrode as A Sensor for Dopamine Detection [J]. Journal of Electrochemistry, 2018, 24(5): 555-562. |
[5] | YANG Yan, YU Peng, ZHANG Xiao-hua*, CHEN Jin-hua*. Sensitive Detection of Hydroxyl Radical based on Silver-Enhanced Gold Nanoparticle Label [J]. Journal of Electrochemistry, 2015, 21(1): 22-28. |
[6] | LIU Jun-tao, LIU Yan-ling, CHENG Zhi, CHEN Shi-jing, HUANG Wei-Hua*. Electrochemical Monitoring of Cell Wall-Regulated Transient Extracellular Oxidative Burst from Single Plant Cells [J]. Journal of Electrochemistry, 2015, 21(1): 29-38. |
[7] | XIAO Jing-jing, XU Hui-ying, XU Li, LIU Bao-hong*. Electrochemical Detection of L-cysteine based on Iron Phthalocyanine/Nitrogen-Doped Graphene Modified Electrodes [J]. Journal of Electrochemistry, 2015, 21(1): 53-57. |
[8] | LIN Li-qing, ZHAO Cheng-fei, JIANG Zhou-qian, WENG Shao-huang, XIE Xiao-lan, Lin Xin-hua*. Novel DNA Electrochemical Biosensor for K-Ras Point Mutation Detection Based on DNA Polymerase I [J]. Journal of Electrochemistry, 2015, 21(1): 72-77. |
[9] | HUANG Chun-fang, YAO Gui-hong, QIU Jian-ding*. Preparation of Surface Molecularly Imprinted Magnetic Nanoparticles for Hemoglobin Sensing [J]. Journal of Electrochemistry, 2014, 20(6): 521-526. |
[10] | ZHU Cheng-zhou, HAN Lei, DONG Shao-jun*. Novel Electrochemical Interfaces Based on Functional Nanomaterials and Their Related Applications [J]. Journal of Electrochemistry, 2014, 20(3): 219-233. |
[11] | FENG Shi, CHEN Shu, YANG Qing, XIANG Juan*. Fabrication and Localized Surface Plasmon Resonance of Ultrathin Nanoporous Gold Films [J]. Journal of Electrochemistry, 2013, 19(2): 151-154. |
[12] | LIU Bin, HUANG Yong-Xing, LIAN Hui-Ting, WU Hong-Mei. Preparations and Characters for Acetamiprid of Molecular Imprinted Polymer Electrochemical Sensors [J]. Journal of Electrochemistry, 2011, 17(3): 323-328. |
[13] | MA Chun-an1*,ZHENG Qin-an2,ZHOU Qiang2,XU Ying-hua1. Electrosynthesis of p-aminobenzenearsenic Acid [J]. Journal of Electrochemistry, 2010, 16(1): 70-73. |
[14] | LIU Zhao-na, ZHANG Jin-tao, TIAN Fang, LIU Peng-peng, MA Hou-yi, DING Yi. Design and Fabrication of the High Efficient Platinum-Nanoporous Gold Catalysts [J]. Journal of Electrochemistry, 2008, 14(3): 273-277. |
[15] | Cha Chuansin; Lu Juntao. Study of the Electrochemistry of Systems of Practical Importance [J]. Journal of Electrochemistry, 1995, 1(2): 115-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||