Journal of Electrochemistry ›› 2016, Vol. 22 ›› Issue (5): 513-520.doi: 10.13208/j.electrochem.160544
• Special Issue on Energy Electrochemical Materials(Guest Editor: Professor Jun Chen) • Previous Articles Next Articles
ZHOU Wen, LU Xue-feng, WU Ming-mei*, LI Gao-ren*
Received:
2016-05-23
Revised:
2016-07-20
Online:
2016-10-28
Published:
2016-08-01
Contact:
WU Ming-mei, LI Gao-ren
E-mail:ligaoren@mail.sysu.edu.cn; ceswmm@mail.sysu.edu.cn
Supported by:
This work was supported by National Natural Science Foundation of China (51173212), National Basic Research Program of China (2015CB932304), Natural Science Foundation of Guangdong Province (S2013020012833), Project of High Level Talents in Higher School of Guangdong Province, and Science and Technology Planning Project of Guangdong Province (2013B010403011).
CLC Number:
ZHOU Wen, LU Xue-feng, WU Ming-mei, LI Gao-ren. Template-Assisted Hydrothermal Synthesis of NiO@Co3O4 Hollow Spheres with Hierarchical Porous Surfaces for Supercapacitor Applications[J]. Journal of Electrochemistry, 2016, 22(5): 513-520.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.160544
(1) Chen, Z.; Augustyn, V.; Wen, J; et al. High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. [J]. Advanced Materials, 2011, 23, 791-795. (2) Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. [J]. Nano Letters, 2011, 11, 1215-1220. (3) Aricò, A. S.; Bruce, P.; Scrosati, B.; et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. [J]. Nature Materials, 2005, 4, 366–377. (4) Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. [J]. Advanced Materials, 2008, 20, 2878-2887. (5) Peng, C.; Zhang, S. W.; Zhou, X. H.; et al. Unequalisation of Electrode Capacitances for Enhanced Energy Capacity in Asymmetrical Supercapacitors. [J]. Energy & Environmental Science, 2010, 3, 1499-1502. (6) Zhang, L. L.; Zhao, X. S. Carbon-Based Materials as Supercapacitor Electrodes. [J]. Chemical Society Reviews, 2009, 38, 2520-2531. (7) Peng, X.; Peng, L.; Wu, C.; et al. Two Dimensional Nanomaterials for Flexible Supercapacitors. [J]. Chemical Society Reviews, 2014, 43, 3303-3323. (8) Rakhi, R. B.; Chen, W.; Cha, D.; et al. Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. [J]. Nano Letters, 2012, 12, 2559-2567. (9) Cheng, Y.; Lu, S.; Zhang, H.; et al. Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. [J]. Nano Letters, 2012, 12, 4206–4211. (10) Maruyama, H.; Nakano, H.; Nakamoto, M.; et al. High-Power Electrochemical Energy Storage System Employing Stable Radical Pseudocapacitors. [J]. Angewandte Chemie International Edition, 2014, 126, 1348–1352. (11) Richey, F. W.; Dyatkin, B.; Gogotsi, Y.; et al. Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. [J]. Journal of the American Chemical Society, 2013, 135, 12818-12826. (12) Lee, C. Y.; Bond, A. M. Revelation of Multiple Underlying RuO2 Redox Processes Associated with Pseudocapacitance and Electrocatalysis. [J]. Langmuir, 2010, 26, 16155-16162. (13) Chen, L. Y.; Hou, Y.; Kang, J. L.; et al. Toward the Theoretical Capacitance of RuO2 Reinforced by Highly Conductive Nanoporous Gold. [J]. Advanced Energy Materials, 2013, 3, 851-856. (14) Ding, S. J.; Zhu, T.; Chen, J.; et al. Controlled Synthesis of Hierarchical NiO Nanosheet Hollow Spheres with Enhanced Supercapacitive Performance. [J]. Journal of Materials Chemistry, 2011, 21, 6602-6606. (15) Lee, J. W.; Ahn, T.; Kim, J. H.; et al. Nanosheets Based Mesoporous NiO Microspherical Structures via Facile and Template-Free Method for High Performance Supercapacitors. [J]. Electrochimica Acta, 2011, 56, 4849-4857. (16) Wang, X. Y.; Wang, X. Y.; Yi, L. H.; et al. Preparation and Capacitive Properties of the Core–Shell Structure Carbon Aerogel Microbeads- Nanowhisker-Like NiO Composites. [J]. Journal of Power Sources, 2013, 224, 317-323. (17) Deori, K.; Ujjain, S. K.; Sharma, R. K.; et al. Morphology Controlled Synthesis of Nanoporous Co3O4 Nanostructures and Their Charge Storage Characteristics in Supercapacitors. [J]. ACS Applied Materials & Interfaces, 2013, 5, 10665-10672. (18) Zhang, Y. Z.; Wang, Y.; Xie, Y. L.; et al. Porous Hollow Co3O4 with Rhombic Dodecahedral Structures for High-Performance Supercapacitors. [J]. Nanoscale, 2014, 6, 14354-14359. (19) Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; et al. Freestanding Co3O4 Nanowire Array for High Performance Supercapacitors. [J]. RSC Advances, 2012, 2, 1835-1841. (20) Zhong, J. H.; Wang, A. L.; Li, G. R.; et al. Co3O4/Ni(OH)2 Composite Mesoporous Nanosheet Networks as a Promising Electrode for Supercapacitor Applications. [J]. Journal of Materials Chemistry, 2012, 22, 5656- 5665. (21) Liu, M. C.; Kong, L. B.; Lu, C.; et al. A Sol–Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. [J]. ACS Applied Materials & Interfaces, 2012, 4, 4631-4636. (22) Shen, L. F.; Yu, L.; Yu, X. Y.; et al. Self-Templated Formation of Uniform NiCo2O4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors. [J]. Angewandte Chemie International Edition, 2015, 54, 1868-1872. (23) Li, W. Y.; Xu, K. B.; Song, G. S.; et al. Facile Synthesis of Porous MnCo2O4.5 Hierarchical Architectures for High-Rate Supercapacitors. [J]. CrystEngComm, 2014, 16, 2335-2339. (24) Zhu, D. D.; Wang, Y. D.; Yuan, G. L.; et al. High-Performance Supercapacitor Electrodes Based on Hierarchical Ti@Mno2 Nanowire Arrays. [J]. Chemical Communications, 2014, 50, 2876-2878. (25) Yuan, C. Z.; Zhang, X. G.; Su, L. H.; et al. Facile Synthesis and Self-Assembly of Hierarchical Porous NiO Nano/Micro Spherical Superstructures for High Performance Supercapacitors. [J]. Journal of Materials Chemistry, 2009, 19, 5772-5777. (26) Liang, K.; Tang, X. Z.; Hu, W. C. High-Performance Three-Dimensional Canoporous NiO Film as A Supercapacitor Electrode. [J]. Journal of Materials Chemistry, 2012, 22, 11062-11067. (27) Cao, C. Y.; Guo, W.; Cui, Z. M.; et al. Microwave-assisted Gas/Liquid Interfacial Synthesis of Flowerlike NiO Hollow Nanosphere Precursors and Their Application as Supercapacitor Electrodes. [J]. Journal of Materials Chemistry, 2011, 21, 3204-3209. (28) Wang, D. W.; Li, F.; Liu, M.; et al. 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. [J]. Angewandte Chemie International Edition, 2008, 47, 373-376. (29) Wang, X.; Yan, C. Y.; Sumboja, A.; et al. High Performance Porous Nickel Cobalt Oxide Nanowires for Asymmetric Supercapacitor. [J]. Nano Energy, 2014, 3, 119-126. (30) Zhang, X.; Zhao, Y. Q.; Xu, C. L. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. [J]. Nanoscale, 2014, 6, 3638–3646. (31) Lu, X. F.; Wu, D. J.; Li, R. Z.; et al. Hierarchical NiCo2O4 nanosheets @hollow microrod arrays for high-performance asymmetric supercapacitors. [J]. Journal of Materials Chemistry A, 2014, 2, 4706-4713. (32)Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; et al. Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors. [J]. Journal of Materials Chemistry, 2011, 21, 10504-10511. |
[1] | MA Wu-wei, CHANG Qi-gang, SHI Xiong-fang, TONG Yan-bin, ZHOU Li, YE Bang-ce, LU Jian-jiang, ZHAO Jin-hu. Novel Electrochemical Sensor Based on Integration of Nanoporous Gold with Molecularly Imprinted Polymer for Detection of Arsenic Ion(III) [J]. Journal of Electrochemistry, 2020, 26(6): 900-910. |
[2] | XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites [J]. Journal of Electrochemistry, 2020, 26(6): 890-899. |
[3] | JIN Tong-zheng, YANG Yu-meng, FAN Sheng-hui, WEI Guo-ying, ZHANG Zhao. Synergistic Effect of Dissolving O2 and Wavelength on the Photo-Assisted Anodic Deposition of CeO2 Thin Films [J]. Journal of Electrochemistry, 2020, 26(6): 868-875. |
[4] | WANG Yi-jie, NIU Dong-fang, ZHANG Xin-sheng. Effect of 18-Crown-6 Additive on Chromium Electrodeposition in Ionic Liquid [J]. Journal of Electrochemistry, 2020, 26(6): 859-867. |
[5] | DUAN Ming-tao, MENG Yan-shuang, ZHANG Hong-shuai. Preparations and Sodium Storage Properties of Ni3S2@CNT Composite [J]. Journal of Electrochemistry, 2020, 26(6): 850-858. |
[6] | WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling [J]. Journal of Electrochemistry, 2020, 26(6): 777-788. |
[7] | ZHANG Ze-Yang, SUN Lan, LIN Chang-Jian. Preparations and Photoelectrochemical Performances of RGO-TiO2 Nanotubes Arrays [J]. Journal of Electrochemistry, 2020, 26(6): 844-849. |
[8] | LOU Jing-yuan, YOU Dong-jiang, LI Xue-jing. Step-by-Step Modification of Graphite Felt Electrode for Vanadium Redox Flow Battery [J]. Journal of Electrochemistry, 2020, 26(6): 876-884. |
[9] | WU Kai. Preparation and Process Optimization of Cathode Materials for Lithium-Sulfur Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 825-833. |
[10] | YU Cheng-rong, ZHU Jian-guo, JIANG Cong-ying, GU Yu-chen, ZHOU Ye-xin, LI Zhuo-bin, WU Rong-min, ZHONG Zheng, GUAN Wan-bing. Numerical Simulations of Current and Temperature Distribution of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based on the Theory of Electric-Chemical-Thermal Coupling [J]. Journal of Electrochemistry, 2020, 26(6): 789-796. |
[11] | ZHU Chang, CHEN Wei, SONG Yan-fang, DONG Xiao, LI Gui-hua, WEI Wei, SUN Yu-han. Effect of Reaction Conditions on Cu⁃Catalyzed CO2 Electroreduction [J]. Journal of Electrochemistry, 2020, 26(6): 797-807. |
[12] | WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang. Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2020, 26(6): 815-824. |
[13] | Chen Pin-song, Hu Yi-tao, Zhang Xin-yi, Shen Pei-kang. Effect of Stereotaxically-Constructed Graphene on the Negative Electrode Performance of Lead-Acid Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 834-843. |
[14] | YANG Na-chuan, WANG Yu, SHUAI Yi, CHEN Kang-hua. Preparations and Properties of Low Cost Sulfide Solid Electrolytes Li6-xPS5-xClx [J]. Journal of Electrochemistry, 2020, 26(6): 885-889. |
[15] | SHEN Jing, WANG Zi-ming, ZHENG Da-jiang, SONG Guang-ling. Pitting Behaviors of Passivated and Trans-Passivated 304 Stainless Steel [J]. Journal of Electrochemistry, 2020, 26(6): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||