Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (6): 890-899. doi: 10.13208/j.electrochem.190716
• Articles • Previous Articles Next Articles
XING Yi-fei1, LI Na1, WEN Xiao-fang1, HAN Hong-yan2, CUI Min1, ZHANG Cong1, REN Ju-jie1,*(), JI Xue-ping3,*(
)
Received:
2019-07-16
Revised:
2019-12-13
Online:
2020-12-28
Published:
2019-12-16
Contact:
REN Ju-jie,JI Xue-ping
E-mail:jujeren@163.com;xuepingji@126.com
CLC Number:
XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites[J]. Journal of Electrochemistry, 2020, 26(6): 890-899.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.190716
Tab. 1
Comparison of DA detection with different electrochemical sensors
Electrode | Detection range/(μmol·L-1) | LOD/(μmol·L-1) | Sensitivity | Ref. |
---|---|---|---|---|
ERGO/GCE | 0.5~60 | 0.5 | 0.482 μA·(μmol·L-1)-1 | [ |
pHQ/AuNPs/NF | 0.1~10 | 0.0419 | 6.663 μA·(μmol·L-1)-1 | [ |
rGO-Co3O4/GCE | 1~30 | 0.277 | 0.389 μA·(μmol·L-1·cm-2)-1 | [ |
BDD-NEAs | 0.1~20 | 0.1 | 0.0597 μA·(μmol·L-1·cm-2)-1 | [ |
GO/GCE | 1~15 | 0.27 | 0.5545 μA·(μmol·L-1)-1 | [ |
Co[PW12O38]·5H2O/CPE | 8~30 | 5.4 | 0.039 μA·(μmol·L-1)-1 | [ |
SiW11Ni-RGO/GCE | 10~80 | 3.2 | 0.686 μA·(μmol·L-1)-1 | This work |
9.71 μA·(μmol·L-1·cm-2)-1 |
[1] |
Jennings K A . A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin[J]. ACS Chemical Neuroscience, 2013,4(5):704-714.
doi: 10.1021/cn4000605 URL pmid: 23627553 |
[2] |
Biosa A, Arduini I, Soriano M E , et al. Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2849-2858.
doi: 10.1021/acschemneuro.8b00276 URL pmid: 29906101 |
[3] |
Nam E, Derrick J S, Lee S , et al. Regulatory activities of dopamine and its derivatives toward metal-free and metal-induced amyloid-β aggregation, oxidative stress, and inflammation in Alzheimer's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2655-2666.
doi: 10.1021/acschemneuro.8b00122 URL pmid: 29782798 |
[4] |
Clark L F, Kodadek T . The immune system and neuroinflammation as potential sources of blood-based biomarkers for Alzheimer's disease, Parkinson's disease, and Huntington's disease[J]. ACS Chemical Neuroscience, 2016,7(5):520-527.
doi: 10.1021/acschemneuro.6b00042 URL pmid: 27046268 |
[5] |
Yorgason J T, Jones S R, España R A . Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection[J]. Neuroscience, 2011,182:125-132.
URL pmid: 21402130 |
[6] |
Verlinden H . Dopamine signalling in locusts and other insects[J]. Insect Biochemistry and Molecular Biology, 2018,97:40-52.
doi: 10.1016/j.ibmb.2018.04.005 URL pmid: 29680287 |
[7] |
Lakkappa N, Krishnamurthy P T, Yamjala K , et al. Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018,149:457-464.
doi: 10.1016/j.jpba.2017.11.043 URL pmid: 29169114 |
[8] | Sun Y L, Lin Y N, Ding C F , et al. An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica@graphite oxide polymers[J]. Sensors and Actuators B: Chemical, 2018,257:312-323. |
[9] |
De Benedetto G E, Fico D, Pennetta A , et al. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014,98:266-270.
doi: 10.1016/j.jpba.2014.05.039 URL pmid: 24971521 |
[10] | Diab N, Morales D M, Andronescu C , et al. A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine[J]. Sensors and Actuators B: Chemical, 2019,285:17-23. |
[11] | Jiao J, Zuo J W, Pang H J , et al. A dopamine electrochemical sensor based on Pd-Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes[J]. Journal of Electroanalytical Chemistry, 2018,827:103-111. |
[12] | Müller A, Peters F, Pope M T , et al. Polyoxometalates: Very large clusters nanoscale magnets[J]. Chemical Reviews, 1998,98(1):239-272. |
[13] | Teng D( 滕达), Wang Q( 王庆), Li N( 李娜 ), et al. Synjournal and electrochemical properties of supramolecular compounds based on POMs[J]. Journal of Molecular Science( 分子科学学报), 2019,35(2):148-154. |
[14] | Zhang L, Li S B, Zhang Z F , et al. Facile fabrication of reduced graphene oxide and Keggin-type polyoxometalates nanocomposite film for high performance electrocatalytic oxidation of nitrite[J]. Journal of Electroanalytical Chemistry, 2017,807:97-103. |
[15] | Zhu D, Guo D X, Zhang L L , et al. Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology[J]. Sensors and Actuators B: Chemical, 2019,281:893-904. |
[16] | Ensafi A A, Gorgabi-Khorzoughi M, Rezaei B , et al. Electrochemical behavior of polyoxometalates decorated on poly diallyl dimethyl ammonium chloride-MWCNTs: A highly selective electrochemical sensor for determination of guanine and adenine[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,78:56-64. |
[17] | Xing R M, Tong L Y, Zhao X Y , et al. Rapid and sensitive electrochemical detection of myricetin based on polyoxometalates/SnO2/gold nanoparticles ternary nanocomposite film electrode[J]. Sensors and Actuators B: Chemical, 2019,283:35-41. |
[18] |
Pang Y H, Zhang Y, Sun X L , et al. Synergistical accumulation for electrochemical sensing of 1-hydroxypyrene on electroreduced graphene oxide electrode[J]. Talanta, 2019,192:387-394.
doi: 10.1016/j.talanta.2018.08.042 URL pmid: 30348407 |
[19] |
Zhang X, Wu L, Zhou J W , et al. A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2015,742:97-103.
doi: 10.1016/j.jelechem.2015.02.006 URL |
[20] |
Gao W, Tjiu W W, Wei J , et al. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide-Multiwalled carbon nanotube film modified glass carbon electrode[J]. Talanta, 2014,120:484-490.
doi: 10.1016/j.talanta.2013.12.012 URL |
[21] |
Liu Y, Huang Z, Xie Q J , et al. Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III)[J]. Sensors and Actuators B: Chemical, 2013,188:894-901.
doi: 10.1016/j.snb.2013.07.113 URL |
[22] |
Prashanth S N, Teradal N L, Seetharamappa J , et al. Fabrification of electroreduced graphene oxide - bentonite sodium composite modified electrode and its sensing application for linezolid[J]. Electrochimica Acta, 2014,133:49-56.
doi: 10.1016/j.electacta.2014.04.022 URL |
[23] |
Li Z, Huang Y, Chen L , et al. Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film[J]. Sensors and Actuators B: Chemical, 2013,181:280-287.
doi: 10.1016/j.snb.2013.01.072 URL |
[24] | Ma R H( 马荣华), Liu C T( 刘春涛), Qu L Y( 瞿伦玉 ). Synjournal, characterization and electrochemical behavior of iron substituted tungstosilicates positional isomer[J]. Chinese Journal of Inorganic Chemistry( 无机化学学报), 2001,17(1):143-148. |
[25] |
Albers R F, Bini R A, Souza J B , et al. A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials[J]. Carbon, 2019,143:73-84.
doi: 10.1016/j.carbon.2018.10.087 URL |
[26] |
Sun J H, Bai S L, Tian Y , et al. Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties[J]. Sensors and Actuators B: Chemical, 2018,257:29-36.
doi: 10.1016/j.snb.2017.10.015 URL |
[27] | Ma R H( 马荣华), Han Z Q( 韩泽群 ). Preparation and adsorption properties of β3-SiW11Ni/GO composites for methylene blue[J]. Chemical Reagents( 化学试剂), 2018,40(3):203-206. |
[28] |
Zhao H Y, Ji X P, Wang B B , et al. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection[J]. Biosensors and Bioelectronics, 2015,65:23-30.
doi: 10.1016/j.bios.2014.10.007 URL pmid: 25461134 |
[29] |
Zhang Z X, Wang X L, Yang X R . A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics[J]. Analyst, 2011,136(23):4960-4965.
doi: 10.1039/c1an15602k URL |
[30] |
Yan X Y, Gu Y, Li C , et al. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine[J]. Biosensors and Bioelectronics, 2016,77:1032-1038.
doi: 10.1016/j.bios.2015.10.085 URL pmid: 26556183 |
[31] |
Jin H, Zhao C Q, Gui R J , et al. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine[J]. Analytica Chimica Acta, 2018,1025:154-162.
doi: 10.1016/j.aca.2018.03.036 URL pmid: 29801604 |
[32] |
Wang J, Li Y M, Wu S F , et al. Study on the electrochemical properties of Salvianic acid a sodium and its analytical application[J]. Journal of the Chinese Chemical Society, 2012,59(8):947-952.
doi: 10.1002/jccs.201100757 URL |
[33] |
Yang L, Liu D, Huang J S , et al. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2014,193:166-172.
doi: 10.1016/j.snb.2013.11.104 URL |
[34] |
Li X Y, Lu X J, Kan X W . 3D electrochemical sensor based on poly(hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection[J]. Journal of Electroanalytical Chemistry, 2017,799:451-458.
doi: 10.1016/j.jelechem.2017.06.047 URL |
[35] |
Numan A, Shahid M M, Omar F S , et al. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sensors and Actuators B: Chemical, 2017,238:1043-1051.
doi: 10.1016/j.snb.2016.07.111 URL |
[36] |
Dincer C, Ktaich R, Laubender E , et al. Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection[J]. Electrochimica Acta, 2015,185:101-106.
doi: 10.1016/j.electacta.2015.10.113 URL |
[37] |
Gao F, Cai X L, Wang X , et al. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2013,186:380-387.
doi: 10.1016/j.snb.2013.06.020 URL |
[38] | Dong P F( 董鹏飞), Li N( 李娜), Zhao H Y( 赵海燕 ). Synjournal of Keggin polyoxometalates modified carbon paste electrode as a sensor for dopamine detection[J]. Journal of Electrochemistry( 电化学), 2018,24(5):555-562. |
[1] | Hao Wang, Xiao-Zhou Cao, Xiang-Xin Xue. Study on Electrodeposition of Antimony in Choline Chloride-Ethylene Glycol Eutectic Solvent [J]. Journal of Electrochemistry, 2022, 28(4): 2103071-. |
[2] | Xue-Fan Cai, Sheng Sun. Cyclic Voltammetric Simulations on Batteries with Porous Electrodes [J]. Journal of Electrochemistry, 2021, 27(6): 646-657. |
[3] | Tesfaye Hailemariam Barkae, Mohamed Ibrahim Halawa, Tadesse Haile Fereja, Shimeles Addisu Kitte, Xian-Gui Ma, Ye-Quan Chen, Guo-Bao Xu. Luminol/Sulfamic Acid Electrochemiluminescence and Its Application for Dopamine Detection [J]. Journal of Electrochemistry, 2021, 27(2): 168-176. |
[4] | ZHANG Ze-Yang, SUN Lan, LIN Chang-Jian. Preparations and Photoelectrochemical Performances of RGO-TiO2 Nanotubes Arrays [J]. Journal of Electrochemistry, 2020, 26(6): 844-849. |
[5] | MA Wu-wei, CHANG Qi-gang, SHI Xiong-fang, TONG Yan-bin, ZHOU Li, YE Bang-ce, LU Jian-jiang, ZHAO Jin-hu. Novel Electrochemical Sensor Based on Integration of Nanoporous Gold with Molecularly Imprinted Polymer for Detection of Arsenic Ion(III) [J]. Journal of Electrochemistry, 2020, 26(6): 900-910. |
[6] | HAN Ping, FENG Hai-tao, DONG Ya-ping, TIAN Sen, ZHANG Bo, LI Wu. Electrochemical Oxidation of Metal Chromium in odium Hydroxide Aqueous Solution [J]. Journal of Electrochemistry, 2020, 26(3): 413-421. |
[7] | WANG Lai-yu, XI Xin, WU Dong-qing, LIU Xiong-yu, JI Wei, LIU Rui-li. Ordered Mesoporous Carbon/Graphene/Nickel Foam for Flexible Dopamine Detection with Ultrahigh Sensitivity and Selectivity [J]. Journal of Electrochemistry, 2020, 26(3): 347-358. |
[8] | YAO Shuo, HUANG Tai-zhong, HAIDER Rizwan, FANG Heng-yi, YU Jie-mei, JIANG Zhan-kun, LIANG Dong, SUN Yue, YUAN Xian-xia. NiO@rGO Supported Palladium and Silver Nanoparticles as Electrocatalysts for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2020, 26(2): 270-280. |
[9] | GUO Jia-yao, CHEN Duan, ZHANG Jie, ZHAN Dong-ping. Cyclic Voltammetry Coupled with Faradic Adsorption/Desorption Processes: A Finite Element Simulation [J]. Journal of Electrochemistry, 2020, 26(2): 281-288. |
[10] | LING Yun, TANG Jing, LIU Guo-kun, ZONG Cheng. Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study in Electrochemical Reduction of P-Nitrothiophenol [J]. Journal of Electrochemistry, 2019, 25(6): 731-739. |
[11] | LI Ming-xue, SHI Hang, LIU Jia, ZHANG Meng, ZHOU Jian-zhang, WU De-yin, TIAN Zhong-qun. Electrochemical Behaviors of Azopurine on Gold Electrodes [J]. Journal of Electrochemistry, 2019, 25(6): 651-659. |
[12] | GUAN Li-hao, WANG Chao, ZHANG Wang, CAI Yu-lu, LI Kai, LIN Yu-qing. A Facile Strategy for Two-Step Fabrication of Gold Nanoelectrode for in Vivo Dopamine Detection [J]. Journal of Electrochemistry, 2019, 25(2): 244-251. |
[13] | DAI Wan-lin, LU Zhi-wei, YE Jian-shan. Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated with CuxO Nanocomposites: A Novel Electrode Substrate for Non-Enzymatic Glucose Sensors [J]. Journal of Electrochemistry, 2019, 25(2): 260-269. |
[14] | YAN Chong, KOU Hua-ri, YAN Bo, LIU Xiao-jing, LI De-jun, LI Xi-fei. Ni/Mn3O4/NiMn2O4 Double-Shelled Hollow Spheres Embedded into Reduced Graphene Oxide as Advanced Anodes for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 112-121. |
[15] | ZHANG Ya-lin, CHEN Chi, ZOU Liang-liang, ZOU Zhi-qing, YANG Hui. Fe-N Doped Hollow Carbon Nanospheres Linked by Carbon Nanotubes for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2018, 24(6): 726-732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||