Journal of Electrochemistry ›› 2022, Vol. 28 ›› Issue (3): 2108541. doi: 10.13208/j.electrochem.210854
• Special Issue: Frontier of Electrochemistry • Previous Articles Next Articles
Jafar Hussain Shah1, Qi-Xian Xie2, Zhi-Chong Kuang1, Ri-Le Ge1, Wen-Hui Zhou1, Duo-Rong Liu1, Alexandre I. Rykov1, Xu-Ning Li1, Jing-Shan Luo2, Jun-Hu Wang1,*()
Received:
2021-12-14
Revised:
2022-01-24
Online:
2022-03-28
Published:
2022-02-22
Contact:
Jun-Hu Wang
E-mail:wangjh@dicp.ac.cn
Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang. In-Situ/Operando57Fe Mössbauer Spectroscopic Technique and Its Applications in NiFe-based Electrocatalysts for Oxygen Evolution Reaction[J]. Journal of Electrochemistry, 2022, 28(3): 2108541.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.210854
Sample | Valence/spin state | δ/Fe (mm·s-1) | Δ (mm·s-1) | Γexp(mm·s-1) | A (%) |
---|---|---|---|---|---|
NiFe0.11-Fe PBA | FeⅢ high spin | 0.44 | 0.50 | 0.43 | 14 |
FeⅢ low spin | -0.17 | 0.50 | 0.38 | 86 | |
NiFe0.2-Fe PBA | FeⅢ high spin | 0.40 | 0.65 | 0.38 | 19 |
FeⅢ low spin | -0.16 | 0.59 | 0.46 | 81 | |
NiFe0.25-Fe PBA | FeⅢ high spin | 0.37 | 0.65 | 0.34 | 21 |
FeⅢ low spin | -0.15 | 0.62 | 0.45 | 79 | |
NiFe0.29-Fe PBA | FeⅢ high spin | 0.37 | 0.64 | 0.36 | 24 |
FeⅢ low spin | -0.15 | 0.57 | 0.44 | 76 |
This work[ | Previous report[ | ||||
---|---|---|---|---|---|
Potential (V vs. RHE) | Fe4+ | Potential (V vs. RHE) | Fe4+ | ||
Fe4+ (%) | δ/Fe (mm·s-1) | Fe4+ (%) | δ/Fe (mm·s-1) | ||
1.32 | 0 | - | - | - | - |
1.37 | 2 | -0.25 | - | - | - |
1.42 (around onset) | 12 | -0.24 | 1.49 (around onset) | 0 | - |
1.47 | 23 | -0.25 | - | - | - |
1.52 | 36 | -0.24 | - | - | - |
1.57 | 40 | -0.25 | 1.62 | 12 | -0.27 |
- | - | - | 1.76 | 21 | -0.25 |
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.
doi: 10.1038/nature11475 URL |
[2] |
Fu J, Cano Z P, Park M G, Yu A, Fowler M, Chen Z W. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives[J]. Adv. Mater., 2017, 29(7):1604685.
doi: 10.1002/adma.201604685 URL |
[3] |
Zhang H W, Shen P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chem. Rev., 2012, 112(5):2780-2832.
doi: 10.1021/cr200035s URL |
[4] |
Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z L, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867):361-369.
doi: 10.1038/s41586-021-03482-7 URL |
[5] |
Johnson D, Qiao Z, Djire A. Progress and challenges of carbon dioxide reduction reaction on transition metal based electrocatalysts[J]. ACS Appl. Energy Mater., 2021, 4(9):8661-8684.
doi: 10.1021/acsaem.1c01624 URL |
[6] |
Li Y J, Sun Y J, Qin Y N, Zhang W Y, Wang L, Luo M C, Yang H, Guo S J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials[J]. Adv. Energy Mater., 2020, 10(11):1903120.
doi: 10.1002/aenm.201903120 URL |
[7] |
Li J C, Kuang Y, Meng Y T, Tian X, Hung W H, Zhang X, Li A W, Xu M Q, Zhou W, Ku C S, Chiang C Y, Zhu G Z, Guo J Y, Sun X M, Dai H J. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency[J]. J. Am. Chem. Soc., 2020, 142(16):7276-7282.
doi: 10.1021/jacs.0c00122 URL |
[8] |
Wang M Y, Wang Z, Gong X Z, Guo Z C. The intensification technologies to water electrolysis for hydrogen production-A review[J]. Renew. Sust. Energ. Rev., 2014, 29:573-588.
doi: 10.1016/j.rser.2013.08.090 URL |
[9] |
Mei L, Gao X P, Gao Z, Zhang Q Y, Yu X G, Rogach A L, Zeng Z Y. Size-selective synjournal of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction[J]. Chem. Commun., 2021, 57(23):2879-2882.
doi: 10.1039/D0CC08091H URL |
[10] |
Yu J, He Q J, Yang G M, Zhou W, Shao Z P, Ni M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting[J]. ACS Catal., 2019, 9(11):9973-10011.
doi: 10.1021/acscatal.9b02457 URL |
[11] |
Hu C L, Zhang L, Gong J L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy Environ. Sci., 2019, 12(9):2620-2645.
doi: 10.1039/C9EE01202H URL |
[12] |
Lyons M E G, Floquet S. Mechanism of oxygen reactions at porous oxide electrodes. Part 2-Oxygen evolution at RuO2, IrO2 and IrxRu1-xO2 electrodes in aqueous acid and alkaline solution[J]. Phys. Chem. Chem. Phys., 2011, 13(12):5314-5335.
doi: 10.1039/c0cp02875d URL |
[13] |
Hunter B M, Gray H B, Muller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22):14120-14136.
pmid: 27797490 |
[14] |
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2):337-365.
doi: 10.1039/C6CS00328A URL |
[15] | Lee Y, Suntivich J, May K J, Perry E E, Shao-Horn Y. Synjournal and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions[J]. J. Phys. Chem. Lett., 2012, 3(3):399-404. |
[16] |
Blakemore J D, Schley N D, Kushner-Lenhoff M N, Winter A M, D’Souza F, Crabtree R H, Brudvig G W. Comparison of amorphous iridium water-oxidation electrocatalysts prepared from soluble precursors[J]. Inorg. Chem., 2012, 51(14):7749-7763.
doi: 10.1021/ic300764f pmid: 22725667 |
[17] |
Dionigi F, Zhu J, Zeng Z H, Merzdorf T, Sarodnik H, Gliech M, Pan L J, Li W X, Greeley J, Strasser P. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides[J]. Angew. Chem. Int. Edit., 2021, 60(26):14446-14457.
doi: 10.1002/anie.202100631 URL |
[18] |
Han L, Dong S L, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016, 28(42):9266-9291.
doi: 10.1002/adma.201602270 URL |
[19] |
Zhang Q Y, Mei L, Cao X H, Tang Y X, Zeng Z Y. Intercalation and exfoliation chemistries of transition metal di-chalcogenides[J]. J. Mater. Chem. A, 2020, 8(31):15417-15444.
doi: 10.1039/D0TA03727C URL |
[20] |
Han N, Liu P Y, Jiang J, Ai L H, Shao Z P, Liu S M. Recent advances in nanostructured metal nitrides for water splitting[J]. J. Mater. Chem. A, 2018, 6(41):19912-19933.
doi: 10.1039/C8TA06529B URL |
[21] |
Zhang H J, Maijenburg A W, Li X P, Schweizer S L, Wehrspohn R B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting[J]. Adv. Funct. Mater., 2020, 30(34):2003261.
doi: 10.1002/adfm.202003261 URL |
[22] |
Gupta S, Patel M K, Miotello A, Patel N. Metal boride-based catalysts for electrochemical water-splitting: A review[J]. Adv. Funct. Mater., 2020, 30(1):1906481.
doi: 10.1002/adfm.201906481 URL |
[23] |
Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma J M. Transition metal carbides in electrocatalytic oxygen evolution reaction[J]. Chin. Chem. Lett., 2021, 32(1):291-298.
doi: 10.1016/j.cclet.2020.02.018 URL |
[24] |
Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF nanoarchitectures for electrochemical water splitting[J]. Adv. Mater., 2021, 33(17):2006042.
doi: 10.1002/adma.202006042 URL |
[25] |
Balogun M S, Huang Y C, Qiu W T, Yang H, Ji H B, Tong Y X. Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting[J]. Mater. Today, 2017, 20(8):425-451.
doi: 10.1016/j.mattod.2017.03.019 URL |
[26] |
Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J] ACS Energy Lett., 2017, 2(8):1937-1938.
doi: 10.1021/acsenergylett.7b00679 URL |
[27] |
Dionigi F, Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes[J]. Adv. Energy Mater., 2016, 6(23):1600621.
doi: 10.1002/aenm.201600621 URL |
[28] |
Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. J. Am. Chem. Soc., 2013, 135(23):8452-8455.
doi: 10.1021/ja4027715 URL |
[29] |
Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic N M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts[J]. Nat. Mater., 2012, 11(6):550-557.
doi: 10.1038/nmat3313 pmid: 22561903 |
[30] |
Munshi M Z A, Tseung A C C, Parker J. The dissolution of iron from the negative material in pocket plate nickel-cadmium batteries[J]. J. Appl. Electrochem., 1985, 15(5):711-717.
doi: 10.1007/BF00620567 URL |
[31] |
Tichenor R L. Nickel oxides-relation between electrochemical and foreign ion content[J]. J. Ind. Eng. Chem., 1952, 44(5), 973-977.
doi: 10.1021/ie50509a022 URL |
[32] |
Corrigan D A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes[J]. J. Electrochem. Soc., 1987, 134(2):377-384.
doi: 10.1149/1.2100463 URL |
[33] |
Zhu K Y, Liu H Y, Li M R, Li X N, Wang J H, Zhu X F, Yang W S. Atomic-scale topochemical preparation of crystalline Fe3+-doped β-Ni(OH)2 for an ultrahigh-rate oxygen evolution reaction[J]. J. Mater. Chem. A, 2017, 5(17):7753-7758.
doi: 10.1039/C7TA01408B URL |
[34] |
Stevens M B, Trang C D M, Enman L J, Deng J, Boettcher S W. Reactive Fe-sites in Ni/Fe(oxy)hydroxide are respon-sible for exceptional oxygen electrocatalysis activity[J]. J. Am. Chem. Soc., 2017, 139(33):11361-11364.
doi: 10.1021/jacs.7b07117 URL |
[35] |
Młynarek G, Paszkiewicz M, Radniecka A. The effect of ferric ions on the behaviour of a nickelous hydroxide electrode[J]. J. Appl. Electrochem., 1984, 14(2):145-149.
doi: 10.1007/BF00618733 URL |
[36] |
Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation[J]. J. Am. Chem. Soc., 2014, 136(18):6744-6753.
doi: 10.1021/ja502379c pmid: 24779732 |
[37] |
Görlin M, Chernev P, de Araújo J F, Reier T, Dresp S, Paul B, Krähnert R, Dau H, Strasser P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts[J]. J. Am. Chem. Soc., 2016, 138(17):5603-5614.
doi: 10.1021/jacs.6b00332 URL |
[38] |
Görlin M, de Araújo J F, Schmies H, Bernsmeier D, Dresp S, Gliech M, Jusys Z, Chernev P, Kraehnert R, Dau H, Strasser P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH[J]. J. Am. Chem. Soc., 2017, 139(5):2070-2082.
doi: 10.1021/jacs.6b12250 URL |
[39] |
Hunter B M, Thompson N B, Müller A M, Rossman G R, Hill M G, Winkler J R, Gray H B. Trapping an iron(VI) water-splitting intermediate in nonaqueous media[J]. Joule, 2018, 2(4):747-763.
doi: 10.1016/j.joule.2018.01.008 URL |
[40] |
Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) ox-ygen evolving catalyst: Kinetics of the “fast” iron sites[J]. J. Am. Chem. Soc., 2016, 138(1):313-318.
doi: 10.1021/jacs.5b10977 URL |
[41] |
Klaus S, Cai Y, Louie M W, Trotochaud L, Bell A T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity[J]. J. Phys. Chem. C, 2015, 119(13):7243-7254.
doi: 10.1021/acs.jpcc.5b00105 URL |
[42] |
Zou S H, Burke M S, Kast M G, Fan J, Danilovic N, Bo-ettcher S W. Fe (oxy) hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution[J]. Chem. Mater., 2015, 27(23):8011-8020.
doi: 10.1021/acs.chemmater.5b03404 URL |
[43] |
Friebel D, Louie M W, Bajdich M, Sanwald K E, Cai Y, Wise A M, Cheng M J, Sokaras D, Weng T C, Alonso-Mori R, Davis R C, Bargar J R, Norskov J K, Nilsson A, Bell A T. Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting[J]. J. Am. Chem. Soc., 2015, 137(3):1305-1313.
doi: 10.1021/ja511559d pmid: 25562406 |
[44] |
Chen S C, Kang Z X, Zhang X D, Xie J F, Wang H, Shao W, Zheng X S, Yan W S, Pan B C, Xie Y. Highly active Fe sites in ultrathin pyrrhotite Fe7S8 nanosheets realizing efficient electrocatalytic oxygen evolution[J]. ACS Central Sci., 2017, 3(11):1221-1227.
doi: 10.1021/acscentsci.7b00424 URL |
[45] |
Xiao H, Shin H, Goddard W A. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci. U.S.A., 2018, 115(23):5872-5877.
doi: 10.1073/pnas.1722034115 URL |
[46] |
Corrigan D A, Conell R S, Fierro C A, Scherson D A. In-situ Moessbauer study of redox processes in a composite hydroxide of iron and nickel[J]. J. Phys. Chem., 1987, 91(19):5009-5011.
doi: 10.1021/j100303a024 URL |
[47] |
Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B, Jin S, Alp E E, Stahl S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mössbauer spectroscopy[J]. J. Am. Chem. Soc., 2015, 137(48):15090-15093.
doi: 10.1021/jacs.5b10699 URL |
[48] |
Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J M, Chen J G G, Liu B. A general method to probe oxygen evolution intermediates at operating conditions[J]. Joule, 2019, 3(6):1498-1509.
doi: 10.1016/j.joule.2019.03.012 URL |
[49] |
Su X Z, Wang Y, Zhou J, Gu S Q, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(36):11286-11292.
doi: 10.1021/jacs.8b05294 URL |
[50] |
Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Sci. Rep., 2015, 5:13801.
doi: 10.1038/srep13801 pmid: 26348156 |
[51] |
Deng Y L, Yeo B S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy[J]. ACS Catal., 2017, 7(11):7873-7889.
doi: 10.1021/acscatal.7b02561 URL |
[52] |
Timoshenko J, Cuenya B R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy[J]. Chem. Rev., 2020, 121(2):882-961.
doi: 10.1021/acs.chemrev.0c00396 URL |
[53] |
Li X N, Wang H Y, Yang H B, Cai W Z, Liu S, Liu B. In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion[J]. Small Methods, 2018, 2(6):1700395.
doi: 10.1002/smtd.201700395 URL |
[54] | Zeng Y Q, Li X N, Wang J H, Sougrati M T, Huang Y Q, Zhang T, Liu B. In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis[J]. Chem. Catal., 2021, 1(6):1215-1233. |
[55] |
Qiu Z, Tai C W, Niklasson G A, Edvinsson T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting[J]. Energy Environ. Sci., 2019, 12(2):572-581.
doi: 10.1039/C8EE03282C URL |
[56] |
Stoerzinger K A, Hong W T, Crumlin E J, Bluhm H, Shao-Horn Y. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy[J]. Accounts Chem. Res., 2015, 48(11):2976-2983.
doi: 10.1021/acs.accounts.5b00275 pmid: 26305627 |
[57] |
Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue H G S, Ogasawara H, Crumlin E J, Liu Z, Bell A T, Nilsson A, Friebel D. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction[J]. J. Phys. Chem. C, 2016, 120(4):2247-2253.
doi: 10.1021/acs.jpcc.5b10931 URL |
[58] |
Li X N, Zhu K Y, Pang J F, Tian M, Liu J Y, Rykov A I, Zheng M Y, Wang X D, Zhu X F, Huang Y Q, Liu B, Wang J H, Yang W S, Zhang T. Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts[J]. Appl. Catal. B-Environ., 2018, 224:518-532.
doi: 10.1016/j.apcatb.2017.11.004 URL |
[59] |
Mössbauer R L. Kernresonanzfluoreszenz von gammastr-ahlung in Ir191[J]. Zeitschrift für Physik, 1958, 151(2):124-143.
doi: 10.1007/BF01344210 URL |
[60] | Liu K, Rykov A I, Wang J H, Zhang T. Recent advances in the application of Mössbauer spectroscopy in heterogeneous catalysis[J]. Adv. Catal., 2015, 58:1-142. |
[61] | Kramm U I, Ni L M, Wagner S. 57Fe Mössbauer spectroscopy characterization of electrocatalysts[J]. Adv. Ma-ter., 2019, 31(31):1805623. |
[62] |
Fischer N, Claeys M. In situ characterization of Fischer-Tropsch catalysts: A review[J]. J. Phys. D-Appl. Phys., 2020, 53(29):293001.
doi: 10.1088/1361-6463/ab761c URL |
[63] | Gütlich P, Bill E, Trautwein A X. Mössbauer spectroscopy and transition metal chemistry: Fundamentals and applications[M]. Deutschland: Springer, 2010. |
[64] |
Wang J H, Jin C Z, Liu X, Liu D R, Sun H, Wei F F, Zhang T, Stevens J G, Khasanov A, Khasanova I. Mössbauer spectroscopy database: Past, present, future[J]. Hyperfine Interact., 2012, 204(1-3):111-117.
doi: 10.1007/s10751-012-0564-0 URL |
[65] |
Klencsár Z. MossWinn-methodological advances in the field of Mössbauer data analysis[J]. Hyperfine Interact., 2013, 217(1-3):117-126.
doi: 10.1007/s10751-012-0732-2 URL |
[66] |
Kuang Z C, Liu S, Li X N, Wang M, Ren X Y, Ding J, Ge R L, Zhou W H, Rykov A I, Sougrati M T, Lippens P E, Huang Y Q, Wang J H. Topotactically constructed nickel-iron (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation[J]. J. Energy Chem., 2021, 57:212-218.
doi: 10.1016/j.jechem.2020.09.014 URL |
[67] |
Li X N, Ao Z M, Liu J Y, Sun H Q, Rykov A I, Wang J H. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient Fenton-like catalysts[J]. ACS Nano, 2016, 10(12):11532-11540.
doi: 10.1021/acsnano.6b07522 URL |
[68] |
Catala L, Mallah T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications[J]. Coord. Chem. Rev., 2017, 346:32-61.
doi: 10.1016/j.ccr.2017.04.005 URL |
[69] |
Zakaria M B, Chikyow T. Recent advances in Prussian blue and Prussian blue analogues: Synjournal and thermal treatments[J]. Coord. Chem. Rev., 2017, 352:328-345.
doi: 10.1016/j.ccr.2017.09.014 URL |
[70] |
Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y. Synjournal of superparamagnetic nanoporous iron oxide particles with hollow interiors by using prussian blue coordination polymers[J]. Chem. Mater., 2012, 24(14):2698-2707.
doi: 10.1021/cm300615s URL |
[71] |
Li X N, Wang Z H, Zhang B, Rykov A I, Ahmed M A, Wang J H. FexCo3-xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Appl. Catal. B-Environ., 2016, 181:788-799.
doi: 10.1016/j.apcatb.2015.08.050 URL |
[72] |
Li X N, Cao C S, Hung S F, Lu Y R, Cai W Z, Rykov A I, Miao S, Xi S B, Yang H B, Hu Z H, Wang J H, Zhao J Y, Alp E E, Xu W, Chan T S, Chen H M, Xiong Q H, Xiao H, Huang Y Q, Li J, Zhang T, Liu B. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material[J]. Chem, 2020, 6(12):3440-3454.
doi: 10.1016/j.chempr.2020.10.027 URL |
[73] |
Li X N, Zeng Y Q, Tung C W, Lu Y R, Baskaran S, Hung S F, Wang S F, Xu C Q, Wang J H, Chan T S, Chen H M, Jiang J C, Yu Q, Huang Y Q, Li J, Zhang T, Liu B. Unveiling the in situ generation of a monovalent Fe(I) site in the single-Fe-atom catalyst for electrochemical CO2 reduction[J]. ACS Catal., 2021, 11(12):7292-7301.
doi: 10.1021/acscatal.1c01621 URL |
[74] | Li J K, Sougrati M T, Zitolo A, Ablett J M, Oĝuz I C, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di Cicco A, Kumar K, Dubau L, Maillard F, Dražic G, Jaouen F. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nature. Catal., 2020, 4(1):10-19. |
[75] |
Zhu K Y, Zhu X F, Yang W S. Application of in-situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew. Chem. Int. Ed., 2019, 58(5):1252-1265.
doi: 10.1002/anie.201802923 URL |
[76] |
Gao M R, Sheng W C, Zhuang Z B, Fang Q R, Gu S, Jiang J, Yan Y S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst[J]. J. Am. Chem. Soc., 2014, 136(19):7077-7084.
doi: 10.1021/ja502128j URL |
[1] | XU Neng-neng, QIAO Jin-li. Recent Progress in Bifunctional Catalysts for Zinc-Air Batteries [J]. Journal of Electrochemistry, 2020, 26(4): 531-562. |
[2] | LU Hang-shuo, HE Xiao-bo, YIN Feng-xiang, LI Guo-ru. Preparations of Nickel-Iron Hydroxide/Sulfide and Their Electrocatalytic Performances for Overall Water Splitting [J]. Journal of Electrochemistry, 2020, 26(1): 136-147. |
[3] | CHEN Dan-dan, GAO Xue-qing, LIU Hong-fei, ZHANG Wei, CAO Rui. Nickel Selenide Derived from [Ni(en)3](SeO3) Complex for Efficient Electrocatalytic Overall Water Splitting [J]. Journal of Electrochemistry, 2019, 25(5): 553-561. |
[4] | LI Zhao, SUN Xian-zhong, LIU Wen-Jie, ZHANG Xiong, WANG Kai, MA Yan-wei. A Comparative Study of Pre-Lithiated Hard Carbon and Soft Carbon as Anodes for Lithium-Ion Capacitors [J]. Journal of Electrochemistry, 2019, 25(1): 122-136. |
[5] | ZHAO Dan-dan, ZHANG Nan, Bu Ling-zheng, SHAO Qi, HUANG Xiao-qing. Recent Advances in Non-Noble Metal Nanomaterials for Oxygen Evolution Electrocatalysis [J]. Journal of Electrochemistry, 2018, 24(5): 455-465. |
[6] | TANG Tang, JIANG Wen-jie, NIU Shuai, HU Jin-song. Design Strategies toward Highly Active Electrocatalysts for Oxygen Evolution Reaction [J]. Journal of Electrochemistry, 2018, 24(5): 409-426. |
[7] | XU Xi,LIU Juan,WU Hua-zong,Jiang Wen-jie. Highly Crystalline Nickel Borate Nanorods as Oxygen Evolution Reaction Electrocatalysts [J]. Journal of Electrochemistry, 2018, 24(4): 319-323. |
[8] | Maduraiveeran Govindhan, Brennan Mao, Aicheng Chen. Comparative Studies of Fe, Ni, Co and Their Bimetallic Nanoparticles for Electrochemical Water Oxidation [J]. Journal of Electrochemistry, 2017, 23(2): 159-169. |
[9] | CHEN Xing-xing. Mini-Review: Possible Applications of Scanning Electrochemical Microscopy (SECM) in Characterizations of Oxygen Reduction Reaction and Oxygen Evolution Reaction [J]. Journal of Electrochemistry, 2016, 22(2): 113-122. |
[10] | YANG Tai-lai, DONG Wen-yan, YANG Hui-min, ZHANG Li, LIANG Zhen-hai*. Preparation and Properties of Binary Oxides CoxCr1-xO3/2 Electrocatalysts for Oxygen Evolution Reaction [J]. Journal of Electrochemistry, 2015, 21(2): 187-192. |
[11] | SUI Sheng1*,MA Li-rong 2. Preparation,Structure,and CV Study of the Supported PtRuIr/TiC Electrocatalysts for Oxygen Electrodes [J]. Journal of Electrochemistry, 2007, 13(3): 302-306. |
[12] | Cao Xiaoyan Yuan Huatang Zhou Zuoxiang Zhang Yunshi . Oxygen Evolution Behavour on Ni Electrode in KOH Solution [J]. Journal of Electrochemistry, 1998, 4(4): 428-433. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||