Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (6): 646-657. doi: 10.13208/j.electrochem.210210
Previous Articles Next Articles
Received:
2021-02-10
Revised:
2021-04-07
Online:
2021-12-28
Published:
2021-04-14
Contact:
Sheng Sun
E-mail:mgissh@t.shu.edu.cn
Xue-Fan Cai, Sheng Sun. Cyclic Voltammetric Simulations on Batteries with Porous Electrodes[J]. Journal of Electrochemistry, 2021, 27(6): 646-657.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.210210
Table 1
Parameters used in the modeling of a lithium-ion battery
Parameter | Negative electrode | Separator | Positive electrode | Unit | |
---|---|---|---|---|---|
Geometry and volume fraction | Thickness | 1.83×10-4 | 5.2×10-5 | 1.83×10-4 | m |
Particle radius | 12.5 | 10; 40; 70 | μm | ||
Active material volume fraction | 0.471 | 0.297 | |||
Electrolyte phase volume fraction | 0.503 | 1 | 0.63 | ||
Conductive filler volume fraction | 0.026 | 0.073 | |||
Concentration | Initial solid phase concentration | 20450 | 0 | mol·m-3 | |
Maximum solid phase concentration | 31507 | 18860; 22860; 26860 | mol·m-3 | ||
Initial electrolyte salt concentration | 2000 | 2000 | 2000 | mol·m-3 | |
Kinetic and transport properties | Solid phase Li+ diffusion coefficient | 3.9×10-10 | 1×10-9; 1×10-10; 1×10-11 | cm2·s-1 | |
Electrolyte phase Li+ diffusion coefficient | 7.5×10-7 | cm2·s-1 | |||
Solid phase conductivity | 100 | 3.8 | S·m-1 | ||
Electrolyte phase conductivity | f(Cl/Clref) | S·m-1 | |||
Electrode open-circuit voltage | f(Cs/Csmax) | 0 | V | ||
Charge-transfer coefficient | 0.5,0.5 | 0.5,0.5 | |||
Li+ transference number | 0.363 | ||||
Film resistance of the SEI | 10 | 0 | Ω·cm2 | ||
Faraday constant | 96500 | C·mol-1 | |||
Ideal gas constant | 8.31 | J·mol-1·K-1 | |||
temperature | 298 | K |
[1] |
Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33): 1800561.
doi: 10.1002/adma.v30.33 URL |
[2] | Song Y H(宋永华), Yang Y X(阳岳希), Hu Z C(胡泽春). Present status and development trend of batteries for electric vehicles[J]. Power Sys. Techno.(电网技术), 2011, 35(4): 1-7. |
[3] | Yan J D(闫金定). Current status and development analysis of lithium-ion batteries[J]. Acta Aeronaut. Astronaut. Sin.(航空学报), 2014, 35(10): 2767-2775. |
[4] | Huang X J(黄学杰), Zhao W W(赵文武), Shao Z G(邵志刚), Chen L Q(陈立泉). Development strategies for new energy materials in China[J/OL]. Strategic Study of CAE(中国工程科学), 2020, 22(5): 60-67. |
[5] | Yang Y S(杨裕生). A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem.(电化学), 2020, 26(4): 443-463. |
[6] |
Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. J. Electrochem. Soc., 1993, 140(6): 1526-1533.
doi: 10.1149/1.2221597 URL |
[7] |
Fuller T F, Doyle M, Newman J. Simulation and optimization of the dual lithium ion insertion cell[J]. J. Electrochem. Soc., 1994, 141(1): 1-10.
doi: 10.1149/1.2054684 URL |
[8] |
Doyle M, Newman J. The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochim. Acta, 1995, 40(13/14): 2191-2196.
doi: 10.1016/0013-4686(95)00162-8 URL |
[9] |
Santhanagopalan S, Guo Q Z, Ramadass P, White R E. Review of models for predicting the cycling performance of lithium ion batteries[J]. J. Power Sources, 2006, 156(2): 620-628.
doi: 10.1016/j.jpowsour.2005.05.070 URL |
[10] |
Xiao M, Choe S Y. Dynamic modeling and analysis of a pouch type LiMn2O4/Carbon high power Li-polymer battery based on electrochemical-thermal principles[J]. J. Power Sources, 2012, 218: 357-367.
doi: 10.1016/j.jpowsour.2012.05.103 URL |
[11] |
Kemper P, Li S E, Kum D. Simplification of pseudo two dimensional battery model using dynamic profile of lithium concentration[J]. J. Power Sources, 2015, 286: 510-525.
doi: 10.1016/j.jpowsour.2015.03.134 URL |
[12] |
Farag M, Fleckenstein M, Habibi S. Continuous piecewise-linear, reduced-order electrochemical model for lithium-ion batteries in real-time applications[J]. J. Power Sources, 2017, 342: 351-362.
doi: 10.1016/j.jpowsour.2016.12.044 URL |
[13] |
Lamorgese A, Mauri R. Tellini B. Electrochemical-thermal P2D aging model of a LiCoO2/graphite cell: Capacity fade simulations[J]. J. Energy Storage, 2018, 20: 289-297.
doi: 10.1016/j.est.2018.08.011 URL |
[14] | Ge Y M(葛亚明), Li J(李军). Parameters identification of lithium-ion batterie model and simulation of the discharge voltage curves[J]. J. Ordnance Equip. Eng.(兵器装备工程学报), 2018, 39(6): 188-191. |
[15] | Wang X X(王晓晓), Zhou Z R(周子睿), Shan Q(单强), Zhang Z M(张增明), Huang J(黄俊), Liu Y W(刘欲文), Chen S L(陈胜利). Porous-electrode theory of lithium ion battery: old paradigm and new challenge[J]. J.electrochem.(电化学), 2020, 26(5): 596-606. |
[16] |
Levi M D, Aurbach D. The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling[J]. J. Electroanal. Chem., 1997, 421(1/2): 79-88.
doi: 10.1016/S0022-0728(96)04832-2 URL |
[17] |
Davies T J, Compton R G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[J]. J. Electroanal. Chem., 2005, 585(1): 63-82.
doi: 10.1016/j.jelechem.2005.07.022 URL |
[18] |
Streeter L, Wildgoose G G, Shao L D, Compton R G. Cy-clic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes[J]. Sensor Actuat. B - Chem., 2008, 133(2): 462-466.
doi: 10.1016/j.snb.2008.03.015 URL |
[19] |
Pérez-Brokate C F, Caprio D D, Mahéé, Férona D, Lamare J D. Cyclic voltammetry simulations with cellular automata[J]. J. Comput. Sci., 2015, 11: 269-278.
doi: 10.1016/j.jocs.2015.08.005 URL |
[20] |
Gavilán-Arriazu E M, Mercer M P, Pinto O A, Oviedo O A, Barraco D E, Hoster H E, Leiva E P M. Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics[J]. J. Solid State Electrochem., 2020, 24(11/12): 3279-3287.
doi: 10.1007/s10008-020-04717-9 URL |
[21] | Zhang S L(张胜利), Yu Z B(余仲宝), Han Z X(韩周祥). Research and development of lithium-ion batteries[J]. Battery Ind.(电池工业), 1999, 4(1): 26-28. |
[22] | Liu L(刘璐), Wang H L(王红蕾), Zhang Z G(张志刚). Working principle of lithium ion battery and its main materials[J]. Sci. & Technol. Inf.(科技信息), 2009, 23: 454, 484. |
[23] | Trasatti S. The absolute electrode potential: an explanatory note[J]. Pure & Appl Chem., 1986, 58(7): 955-966. |
[24] | Zha Q X(查全性). Introduction to kinetics of electrode process[M]. Science Press Co., Ltd.(科学出版社), 2002. |
[25] | Gu H B(顾宏邦). A wrong concept of electrode potential[J]. J. Shanxi Univ.(山西大学学报), 1979, 2: 163-174. |
[26] |
Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. J. Electrochem. Soc., 1996, 143(6): 1890-1903.
doi: 10.1149/1.1836921 URL |
[27] |
Smith K, Wang C Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles[J]. J. Power Sources, 2006, 160(1): 662-673.
doi: 10.1016/j.jpowsour.2006.01.038 URL |
[28] |
Pang H, Mou L J, Guo L, Zhang F Q. Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries[J]. Electrochim. Acta, 2019, 307: 474-487.
doi: 10.1016/j.electacta.2019.03.199 |
[29] | Chaturvedi N A, Klein R, Christensen J, Ahmed J, Kojic A. Algorithms for advanced battery-management systems[J]. IEEE Control Syst. Mag., 2010, 30(3): 49-68. |
[30] |
Prada E, Domenico D D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F. Simplified electrochemical and thermal model of LiFePO4-Graphite Li-ion batteries for fast charge applications[J]. J. Electrochem. Soc., 2012, 159(9): A1508-A1519.
doi: 10.1149/2.064209jes URL |
[31] |
Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A. Electrochemical model based observer design for a lithium-ion battery[J]. IEEE Trans. Control Syst. Technol., 2013, 21(2): 289-301.
doi: 10.1109/TCST.2011.2178604 URL |
[32] | Pang H(庞辉). Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model[J]. Acta Phys. Sin.(物理学报), 2017, 66(23): 238801. |
[33] | Chen H N, Liu Y, Zhang X F, Lan Q, Chu Y, Li Y L, Wu Q X. Single-component slurry based lithium-ion flow battery with 3D current collectors[J]. J. Power Sour-ces, 2021, 485: 229319. |
[34] | Chen D, Tan H T, Rui X H, Zhang Q, Feng Y Z, Geng H B, Li C C, Huang S M, Yu Y. Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery[J]. Infomat, 2019, 1(2): 251-259. |
[1] | Hao Wang, Xiao-Zhou Cao, Xiang-Xin Xue. Study on Electrodeposition of Antimony in Choline Chloride-Ethylene Glycol Eutectic Solvent [J]. Journal of Electrochemistry, 2022, 28(4): 2103071-. |
[2] | Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su. Structural Degradation of Ni-Rich Layered Oxide Cathode for Li-Ion Batteries [J]. Journal of Electrochemistry, 2022, 28(2): 2108431-. |
[3] | Yi Peng, Wei Zhang, Fang-Zhen Zuo, Hao-Ying Lü, Kai-Jun Hong. Storage Performance and Mechanism of MoSe2 Nanospheres in Lithium and Magnesium Ion Batteries [J]. Journal of Electrochemistry, 2021, 27(4): 456-464. |
[4] | Zhen-Lang Liang, Yao Yang, Hao Li, Li-Ying Liu, Zhi-Cong Shi. Lithium Storage Performance of Hard Carbons Anode Materials Prepared by Different Precursors [J]. Journal of Electrochemistry, 2021, 27(2): 177-184. |
[5] | WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling [J]. Journal of Electrochemistry, 2020, 26(6): 777-788. |
[6] | XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites [J]. Journal of Electrochemistry, 2020, 26(6): 890-899. |
[7] | HAN Ping, FENG Hai-tao, DONG Ya-ping, TIAN Sen, ZHANG Bo, LI Wu. Electrochemical Oxidation of Metal Chromium in odium Hydroxide Aqueous Solution [J]. Journal of Electrochemistry, 2020, 26(3): 413-421. |
[8] | GUO Jia-yao, CHEN Duan, ZHANG Jie, ZHAN Dong-ping. Cyclic Voltammetry Coupled with Faradic Adsorption/Desorption Processes: A Finite Element Simulation [J]. Journal of Electrochemistry, 2020, 26(2): 281-288. |
[9] | DONG Qing-yu, CHU Yan-li, SHEN Yan-bin, CHEN Li-wei. Atomic Force Microscopic Characterization of Solid Electrolyte Interphase in Lithium Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(1): 19-31. |
[10] | ZHANG Qing-nuan, ZHANG Fang-fang, LI Hong-xia, YANG Bing-jun, LI Xiao-cheng, YANG Juan. Lithium Storage Performance of High Capacity Material Si@CPZS in Lithium Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(1): 121-129. |
[11] | WANG Fei, ZHAI Huan-huan, WANG Du-dan, LI Yu-peng, CHEN Kang-hua. Structures and Electrochemical Properties of Sn-Cl Co-Doped Li2MnO3 as Positive Materials for Lithium Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(1): 148-155. |
[12] | LI Ming-xue, SHI Hang, LIU Jia, ZHANG Meng, ZHOU Jian-zhang, WU De-yin, TIAN Zhong-qun. Electrochemical Behaviors of Azopurine on Gold Electrodes [J]. Journal of Electrochemistry, 2019, 25(6): 651-659. |
[13] | LING Yun, TANG Jing, LIU Guo-kun, ZONG Cheng. Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study in Electrochemical Reduction of P-Nitrothiophenol [J]. Journal of Electrochemistry, 2019, 25(6): 731-739. |
[14] | M. Rostom Ali, S Sankar Saha, Md Ziaur Rahman. Electrodeposition of Cobalt from Eutectic-Based Ionic Liquid [J]. Journal of Electrochemistry, 2018, 24(5): 546-554. |
[15] | DONG Peng-fei, LI Na, ZHAO Hai-yan, CUI Min, ZHANG Cong, REN Ju-jie,JI Xue-ping. Synthesis of Keggin Polyoxometalates Modified Carbon Paste Electrode as A Sensor for Dopamine Detection [J]. Journal of Electrochemistry, 2018, 24(5): 555-562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||