Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (3): 278-290. doi: 10.13208/j.electrochem.201253
Special Issue: “电催化和燃料电池”专题文章
• Special Issue of the Journal of Electrochemistry Celebrating 100 Years of Chemistry at Xiamen University • Previous Articles Next Articles
Dylan Siltamaki, Shuai Chen, Farnood Rahmati, Jacek Lipkowski, Ai-Cheng Chen*()
Received:
2021-02-22
Revised:
2021-04-16
Online:
2021-06-28
Published:
2021-04-10
Contact:
Ai-Cheng Chen
E-mail:aicheng@uoguelph.ca
Dylan Siltamaki, Shuai Chen, Farnood Rahmati, Jacek Lipkowski, Ai-Cheng Chen. Synthesis and Electrochemical Study of CuAu Nanodendrites for CO2 Reduction[J]. Journal of Electrochemistry, 2021, 27(3): 278-290.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.201253
[1] |
Hossain M N, Wen J L, Chen A C. Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide[J]. Sci. Rep., 2017, 7(1): 3184-3193.
doi: 10.1038/s41598-017-03601-3 pmid: 28600564 |
[2] |
Zhang D B, Tao Z T, Feng F L, He B B, Zhou W, Sun J, Xu J M, Wang Q, Zhao L. High efficiency and selectivity from synergy: Bi nanoparticles embedded in nitrogen doped porous carbon for electrochemical reduction of CO2 to formate[J]. Electrochim. Acta., 2020, 334: 135563.
doi: 10.1016/j.electacta.2019.135563 URL |
[3] |
Huang J Z, Guo X R, Huang X J, Wang L S. Metal (Sn, Bi, Pb, Cd) in-situ anchored on mesoporous hollow kapok-tubes for outstanding electrocatalytic CO2 reduction to formate[J]. Electrochim. Acta., 2019, 325: 134923.
doi: 10.1016/j.electacta.2019.134923 URL |
[4] | Ensafi A A, Alinajafi H A, Rezaei B. Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol[J]. J. Electroanal. Chem., 2016, 78: 382-89. |
[5] |
Ye S T, Fan G L, Xu J J, Yang L, Li F. Nickel-nitrogen-modified porous carbon/carbon nanotube hybrid with necklace-like geometry: An efficient and durable electrocatalyst for selective reduction of CO2 to CO in a wide negative potential region[J]. Electrochim. Acta., 2020, 334: 135583.
doi: 10.1016/j.electacta.2019.135583 URL |
[6] |
Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Designing materials for electrochemical carbon dioxide recycling[J]. Nat. Catal., 2019, 2(8): 648-658.
doi: 10.1038/s41929-019-0306-7 URL |
[7] |
Gao D, Arán-Ais R M, Jeon H S, Roldan Cuenya B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nat. Catal., 2019, 2(3): 198-210.
doi: 10.1038/s41929-019-0235-5 URL |
[8] |
Zhu S Q, Wang Q, Qin X P, Gu M, Tao R, Lee B P, Zhang L L, Yao Y Z, Li T H, Shao M H. Tuning structural and compositional effects in Pd-Au nanowires for highly selective and active CO2 electrochemical reduction reaction[J]. Adv. Energ. Mater., 2018, 8(32): 1802238.
doi: 10.1002/aenm.v8.32 URL |
[9] |
Xu S, Carter E A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction[J]. Chem. Rev., 2018, 119(11): 6631-6669.
doi: 10.1021/acs.chemrev.8b00481 URL |
[10] |
Raciti D, Wang C. Electrochemical alternative to Fischer-Tropsch[J]. Nat. Catal., 2018, 1(10): 741-742.
doi: 10.1038/s41929-018-0160-z URL |
[11] |
De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todoroviĉ P, Regier T, Kelley S O, Yang P, Sargent E H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat. Catal., 2018, 1(2): 103-110.
doi: 10.1038/s41929-017-0018-9 URL |
[12] |
Yi Q, Li W Y, Feng J, Xie K C. Carbon cycle in advanced coal chemical engineering[J]. Chem. Soc. Rev., 2015, 44(15): 5409-5445.
doi: 10.1039/C4CS00453A URL |
[13] |
Bui M, Adjiman C S, Bardow A, Anthony E J, Boston A, Brown S, Fennell P S, Fuss S, Galindo A, Hackett L A, Hallett J P, Herzog H J, Jackson G, Kemper J, Krevor S, Maitland G C, Matuszewski M, Metcalfe I S, Petit C, Puxty G, Reimer J, Reiner D M, Rubin E S, Scott S A, Shah N, Smit B, Trusler J P M, Webley P, Wilcox J, Mac Dowell N. Carbon capture and storage (CCS): the way forward[J]. Energ. Environ. Sci., 2018, 11(5): 1062-1176.
doi: 10.1039/C7EE02342A URL |
[14] |
Ho H J, Iizuka A, Shibata E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies[J]. Ind. Eng. Chem. Res., 2019, 58(21): 8941-8954.
doi: 10.1021/acs.iecr.9b01213 URL |
[15] |
Hurst T F, Cockerill T T, Florin N H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage[J]. Energ. Environ. Sci., 2012, 5(5): 7132-7150.
doi: 10.1039/c2ee21204h URL |
[16] |
Lamaison S, Wakerley D, Montero D, Rousse G, Taverna D, Giaume D, Mercier D, Blanchard J, Tran H N, Fontecave M, Mougel V. Zn-Cu alloy nanofoams as efficient catalysts for the reduction of CO2 to syngas mixtures with a potential-independent H2/CO ratio[J]. ChemSusChem, 2019, 12(2): 511-517.
doi: 10.1002/cssc.v12.2 URL |
[17] |
Chen P, Jiao Y, Zhu Y H, Chen S-M, Song L, Jaroniec M, Zheng Y, Qiao S Z. Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density[J]. J. Mater. Chem. A, 2019, 7(13): 7675-7682.
doi: 10.1039/C9TA01932D URL |
[18] |
Pletcher D. The cathodic reduction of carbon dioxide—What can it realistically achieve? A mini review[J]. Electrochem. Commun., 2015, 61(1): 97-101.
doi: 10.1016/j.elecom.2015.10.006 URL |
[19] |
Qiao J L, Liu Y Y, Hong F, Zhang J J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem. Soc. Rev., 2014, 43(2): 631-675.
doi: 10.1039/C3CS60323G URL |
[20] |
Tryk D A, Fujishima A. Global warming electrochemists enlisted in war: the carbon dioxide reduction battle[J]. Electrochem. Soc. Interface, 2001, 10(1): 32-36.
doi: 10.1149/2.F07011IF URL |
[21] |
Chaplin R P S, Wragg A A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation[J]. J. Appl. Electrochem., 2003, 33(12): 1107-1123.
doi: 10.1023/B:JACH.0000004018.57792.b8 URL |
[22] | Li J H (李金翰), Cheng F Y (程方益). Electrolyte tailoring for electrocatalytic reduction of stable molecules[J]. J. Electrochem.(电化学), 2020, 26(4): 474-485. |
[23] |
Ross M B, Dinh C T, Li Y, Kim D, De Luna P, Sargent E H, Yang P. Tunable Cu enrichment enables designer syngas electrosynjournal from CO2[J]. J. Am. Chem. Soc., 2017, 139(27): 9359-9363.
doi: 10.1021/jacs.7b04892 URL |
[24] |
Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocataly-tic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochim. Acta., 1994, 39(11): 1833-1839.
doi: 10.1016/0013-4686(94)85172-7 URL |
[25] |
Furuya N, Yamazaki T, Shibata M. High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes[J]. J. Electroanal. Chem., 1997, 431(1): 39-41.
doi: 10.1016/S0022-0728(97)00159-9 URL |
[26] | Zhang T, Verma S, Kim S, Fister T T, Kenis P J A, Gewirth A A. Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane[J]. J. Ele-ctroanal. Chem., 2020, 875: 113862. |
[27] | Yang F (杨帆), Deng P L (邓培林), Han Y J (韩优嘉), Pan J (潘静), Xiao B Y (夏宝玉). Copper-based compounds for electrochemical reduction of carbon dioxide[J]. J. Ele-ctrochem.(电化学), 2019, 25(4): 426-444. |
[28] | Zhang X R (张旭锐), Liu Y Y (刘予宇), Shao X L (邵晓琳), Yi J (易金), Zhang J J (张久俊). Challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. J. Electrochem.(电化学), 2019, 25(4): 413-425. |
[29] |
Welch A J, DuChene J S, Tagliabue G, Davoyan A, Cheng W H, Atwater H A. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst[J]. ACS Appl. Energ. Mater., 2019, 2(1): 164-170.
doi: 10.1021/acsaem.8b01570 URL |
[30] |
Zhu W L, Michalsky R, Metin Ö, Lv H, Guo S, Wright C J, Sun X, Peterson A A, Sun S H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. J. Am. Chem. Soc., 2013, 135(45): 16833-16836.
doi: 10.1021/ja409445p URL |
[31] |
Chen Y, Li C W, Kanan M W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(49): 19969-19972.
doi: 10.1021/ja309317u URL |
[32] |
Nesbitt N T, Ma M, Trzešniewski B J, Jaszewski S, Tafti F, Burns M J, Smith W A, Naughton M J. Au dendrite electrocatalysts for CO2 electrolysis[J]. J. Phys. Chem. C, 2018, 122(18): 10006-10016.
doi: 10.1021/acs.jpcc.8b01831 URL |
[33] |
Wen X S, Chang L, Gao Y, Han J Y, Bai Z M, Huan Y H, Li M H, Tang Z Y, Yan X Q. A reassembled nanoporous gold leaf electrocatalyst for efficient CO2 reduction towards CO[J]. Inorg. Chem. Front., 2018, 5(5): 1207-1212.
doi: 10.1039/C8QI00023A URL |
[34] |
Zhu W L, Zhang Y J, Zhang H Y, Lv H F, Li Q, Michalsky R, Peterson A A, Sun S H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. J. Am. Chem. Soc., 2014, 136(46): 16132-16135.
doi: 10.1021/ja5095099 URL |
[35] |
Chen C Z, Zhang B, Zhong J H, Cheng Z M. Selective electrochemical CO2 reduction over highly porous gold films[J]. J. Mater. Chem. A, 2017, 5(41): 21955-21964.
doi: 10.1039/C7TA04983H URL |
[36] |
Rogers C, Perkins W S, Veber G, Williams T E, Cloke R R, Fischer F R. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes[J]. J. Am. Chem. Soc., 2017, 139(11): 4052-4061.
doi: 10.1021/jacs.6b12217 URL |
[37] |
Narayanaru S, Chinnaiah J, Phani K L, Scholz F. pH dependent CO adsorption and roughness-induced selectivity of CO2 electroreduction on gold surfaces[J]. Electrochim. Acta., 2018, 264: 269-274.
doi: 10.1016/j.electacta.2018.01.106 URL |
[38] |
Chen S, Chen A C. Electrochemical reduction of carbon dioxide on Au nanoparticles: An in situ FTIR study[J]. J. Phys. Chem. C, 2019, 123(39): 23898-23906.
doi: 10.1021/acs.jpcc.9b04080 URL |
[39] |
Hossain M N, Liu Z, Wen J L, Chen A C. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide[J]. Appl. Catal. B, 2018, 236: 483-489.
doi: 10.1016/j.apcatb.2018.05.053 URL |
[40] |
Dong H, Li Y, Jiang D E. First-principles insight into electrocatalytic reduction of CO2 to CH4 on a copper nanoparticle[J]. J. Phys. Chem. C, 2018, 122(21): 11392-11398.
doi: 10.1021/acs.jpcc.8b01928 URL |
[41] |
Sen S, Liu D, Palmore G T R. Electrochemical reduction of CO2 at copper nanofoams[J]. ACS Catal., 2014, 4(9): 3091-3095.
doi: 10.1021/cs500522g URL |
[42] |
Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Lett., 2018, 3(7): 1545-1556.
doi: 10.1021/acsenergylett.8b00553 URL |
[43] |
Mistry H, Varela A S, Bonifacio C S, Zegkinoglou I, Sinev I, Choi Y W, Kisslinger K, Stach E A, Yang J C, Strasser P, Cuenya B R. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nat. Commun., 2016, 7(1): 12123.
doi: 10.1038/ncomms12123 URL |
[44] | Dai L, Qin Q, Wang P, Zhao X J, Hu C Y, Liu P X, Qin R X, Chen M, Ou D H, Xu C F, Mo S G, Wu B H, Fu G, Zhang P, Zheng N F. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Sci. Adv., 2017, 3(9): e1701069. |
[45] |
Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction[J]. Nano Lett., 2015, 15(10): 6829-6835.
doi: 10.1021/acs.nanolett.5b03298 pmid: 26352048 |
[46] |
Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. J. Am. Chem. Soc., 2012, 134(17): 7231-7234.
doi: 10.1021/ja3010978 URL |
[47] |
Ren D, Deng Y, Handoko A D, Chen C S, Malkhandi S, Yeo B S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts[J]. ACS Catal., 2015, 5(5): 2814-2821.
doi: 10.1021/cs502128q URL |
[48] | Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. J. Chem. Soc., Faraday Trans.1, 1989, 85(8): 2309-2326. |
[49] |
Kas R, Kortlever R, Yilmaz H, Koper M T M, Mul G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectroChem, 2015, 2(3): 354-358.
doi: 10.1002/celc.v2.3 URL |
[50] |
Velasco-Vélez J-J, Jones T, Gao D, Carbonio E, Arrigo R, Hsu C J, Huang Y C, Dong C L, Chen J M, Lee J F, Strasser P, Roldan Cuenya B, Schlögl R, Knop-Gericke A, Chuang C H. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons[J]. ACS Sustain. Chem. Eng., 2019, 7(1): 1485-1492.
doi: 10.1021/acssuschemeng.8b05106 URL |
[51] |
Nur Hossain M, Chen S, Chen A. Thermal-assisted synjournal of unique Cu nanodendrites for the efficient electrochemical reduction of CO2[J]. Appl. Catal. B, 2019, 259: 118096-118104.
doi: 10.1016/j.apcatb.2019.118096 URL |
[52] |
Hossain M N, Wen J L, Konda S K, Govindhan M, Chen A C. Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film[J]. Electrochem. Commun., 2017, 82: 16-20.
doi: 10.1016/j.elecom.2017.07.006 URL |
[53] | Zhang B H (张宝花), Zhang J T (张进涛). Regulation of copper surface via redox reaction for enhancing carbon dioixide electroreduction[J]. J. Electrochem.(电化学), 2019, 25(4): 497-503. |
[54] | Sartin M, Chen W(陈微), Chen Y X(陈艳霞), He F(贺凡). Recent progress in the mechanistic understanding of CO2 reduction on copper [J]. J. Electrochem.(电化学), 2020, 26(1): 41-53. |
[55] |
Christophe J, Doneux T, Buess-Herman C. Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-gold alloys[J]. Electrocatalysis, 2012, 3(2): 139-146.
doi: 10.1007/s12678-012-0095-0 URL |
[56] |
Jia F L, Yu X X, Zhang L Z. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst[J]. J. Power Sources, 2014, 252: 85-89.
doi: 10.1016/j.jpowsour.2013.12.002 URL |
[57] |
Kim D, Resasco J, Yu Y, Asiri A M, Yang P D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nat. Commun., 2014, 5(1): 4948-4956.
doi: 10.1038/ncomms5948 URL |
[58] |
Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias F J, Solla-Gullón J, Koper M T M, Rodriguez P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction[J]. J. Mater. Chem. A, 2015, 3(47): 23690-23698.
doi: 10.1039/C5TA06804E URL |
[59] |
Kim D, Xie C L, Becknell N, Yu Y, Karamad M, Chan K, Crumlin E J, Nörskov J K, Yang P D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(24): 8329-8336.
doi: 10.1021/jacs.7b03516 URL |
[60] |
Pander Iii J E, Ren D, Yeo B S. Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO2 reduction reaction[J]. Catal. Sci. Tech., 2017, 7(24): 5820-5832.
doi: 10.1039/C7CY01785E URL |
[61] |
Zhu W J, Zhang L, Yang P P, Hu C L, Dong H, Zhao Z J, Mu R T, Gong J L. Formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys[J]. ACS Energy Lett., 2018, 3(9): 2144-2149.
doi: 10.1021/acsenergylett.8b01286 URL |
[62] |
Gao J, Ren D, Guo X Y, Zakeeruddin S M, Grötzel M. Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts[J]. Faraday Discuss., 2019, 215: 282-296.
doi: 10.1039/C8FD00219C URL |
[1] | Li-Jun Wei, Zi-Han Zhou, Yun-Wen Wu, Ming Li, Su Wang. Research Progresses of Cobalt Interconnect and Superfilling by Electroplating in Chips [J]. Journal of Electrochemistry, 2022, 28(6): 2104431-. |
[2] | Hua Miao, Ming-Rui Li, Wen-Zhong Zou, Guo-Yun Zou, Shou-Xu Wang, Xiao-Jing Ye, Kai Zhu. Study on the Effect of Additives in the Electrodeposition of Sn-Ag-Cu Ternary Alloy Solder [J]. Journal of Electrochemistry, 2022, 28(6): 2104411-. |
[3] | Wang Ying-Chao, Ma Zi-Zai, Wu Yi-Fan, Wang Xiao-Guang. Preparation and Properties of GCP-Supported Palladium Particles Composite towards Electrochemical Ammonia Synthesis [J]. Journal of Electrochemistry, 2022, 28(5): 2104091-. |
[4] | Zhan Chong-Bo, Zhang Run-Jia, Fu Xu, Sun Hai-Jing, Zhou Xin, Wang Bao-Jie, Sun Jie. Effect of Chloride Ion on Electrochemical Behavior of Silver Electrodeposition in ChCl-Urea Low Eutectic Solvent [J]. Journal of Electrochemistry, 2022, 28(5): 2111151-. |
[5] | Hao Wang, Xiao-Zhou Cao, Xiang-Xin Xue. Study on Electrodeposition of Antimony in Choline Chloride-Ethylene Glycol Eutectic Solvent [J]. Journal of Electrochemistry, 2022, 28(4): 2103071-. |
[6] | Jiang Li, Zuo-Peng Li, Yun-Feng Bai, Su-Xing Luo, Yong Guo, Ya-Yan Bao, Rong Li, Hai-Yan Liu, Feng Feng. A Flexible Enzymeless Glucose Sensor via Electrodepositing 3D Flower-like CoS onto Self-Supporting Graphene Tape Electrode [J]. Journal of Electrochemistry, 2022, 28(1): 2104211-. |
[7] | Meng Li, Li-Gang Feng. Advances of Phosphide Promoter Assisted Pt Based Catalyst for Electrooxidation of Methanol [J]. Journal of Electrochemistry, 2022, 28(1): 2106211-. |
[8] | Qian Guo, Jia-Long Fu, Cheng-Yan Zhang, Chao-Yue Cai, Cheng Wang, Li-Hua Zhou, Rui-Bo Xu, Ming-Yan Wang. Preparation of CoO/RGO@Ni Foam Electrode and Its Electrocatalytic Reduction of CO2 [J]. Journal of Electrochemistry, 2021, 27(4): 449-455. |
[9] | Shuang-Juan Liu, Hai-Jing Wang, Jing Guo, Peng-Cheng Wang, Hao Zhou, Cai Meng, Han-Jie Guo. A Preliminary Study on Graphene Film-Metal Composites Prepared by Electrodeposition [J]. Journal of Electrochemistry, 2021, 27(4): 396-404. |
[10] | Wei-Yi Zhang, Xian-Yin Ma, Shou-Zhong Zou, Wen-Bin Cai. Recent Advances in Glycerol Electrooxidation on Pt and Pd: from Reaction Mechanisms to Catalytic Materials [J]. Journal of Electrochemistry, 2021, 27(3): 233-256. |
[11] | Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang. Preparation of Co1-xS-MnS@CNTs/CNFs for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2021, 27(3): 301-310. |
[12] | Zhi-Hua Zhuang, Wei Chen. Application of Atomically Precise Metal Nanoclusters in Electrocatalysis [J]. Journal of Electrochemistry, 2021, 27(2): 125-143. |
[13] | Dan-Dan Wu, Xu Wu. Research Progress in Electrodeposition Technology of Titanium-Based Iridium Oxide Electrode [J]. Journal of Electrochemistry, 2021, 27(1): 35-44. |
[14] | Zhi-Yuan Yu, Rui Huang, Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun. Preparation of PdCoIr Tetrahedron Nanocatalysts and Its Performance toward Ethanol Oxidation Reaction [J]. Journal of Electrochemistry, 2021, 27(1): 63-75. |
[15] | JIN Tong-zheng, YANG Yu-meng, FAN Sheng-hui, WEI Guo-ying, ZHANG Zhao. Synergistic Effect of Dissolving O2 and Wavelength on the Photo-Assisted Anodic Deposition of CeO2 Thin Films [J]. Journal of Electrochemistry, 2020, 26(6): 868-875. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||