Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (2): 185-194. doi: 10.13208/j.electrochem.201248
Special Issue: “电催化和燃料电池”专题文章
• ARTICLE • Previous Articles Next Articles
Xue-Ping Qin1,*(), Shang-Qian Zhu1, Lu-Lu Zhang1, Shu-Hui Sun2, Min-Hua Shao1,*(
)
Received:
2021-02-02
Revised:
2021-03-10
Online:
2021-04-28
Published:
2021-03-20
Contact:
Xue-Ping Qin,Min-Hua Shao
E-mail:xqinaa@connect.ust.hk;kemshao@ust.hk
Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao. Theoretical Studies of Metal-N-C for Oxygen Reduction and Hydrogen Evolution Reactions in Acid and Alkaline Solutions[J]. Journal of Electrochemistry, 2021, 27(2): 185-194.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.201248
[1] |
Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nat. Energy, 2016,1(1):15006.
doi: 10.1038/nenergy.2015.6 URL |
[2] |
Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angew. Chem. Int. Ed., 2015,54(15):4646-4650.
doi: 10.1002/anie.201411125 URL |
[3] |
Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323(5915):760-764.
doi: 10.1126/science.1168049 URL |
[4] |
Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011,10(10):780-786.
doi: 10.1038/nmat3087 URL |
[5] |
Michalsky R, Zhang Y J, Peterson A A. Trends in the hydrogen evolution activity of metal carbide catalysts[J]. ACS Catal., 2014,4(5):1274-1278.
doi: 10.1021/cs500056u URL |
[6] |
Cao B, Veith G M, Neuefeind J C, Adzic R R, Khalifah P G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2013,135(51):19186-19192.
doi: 10.1021/ja4081056 URL |
[7] |
Wang H T, Lu Z Y, Xu S C, Kong D S, Cha J J, Zheng G Y, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction[J]. Proc. Natl. Acad. Sci., 2013,110(49):19701-19706.
doi: 10.1073/pnas.1316792110 URL |
[8] |
Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332(6028):443-447.
doi: 10.1126/science.1200832 URL |
[9] |
Shao M H, Chang Q W, Dodelet J P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016,116(6):3594-3657.
doi: 10.1021/acs.chemrev.5b00462 URL |
[10] |
Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324(5923):71-74.
doi: 10.1126/science.1170051 URL |
[11] | Zhang Y F(张焰峰), Xiao F(肖菲), Chen G Y(陈广宇), Shao M H(邵敏华). Fuel cell performance of non-precious metal based electrocatalysts[J]. J. Electrochem.(电化学) 2020,26(4):563-572. |
[12] | Xiu L Y(修陆洋), Yu M Z(于梦舟), Yang P J(杨鹏举), Wang Z Y(王治宇), Qiu J S(邱介山). Caging porous Co-NC nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J]. J. Electrochem.(电化学) 2018,24(6):715-725. |
[13] |
Zhang L L, Liu W, Dou Y B, Du Z, Shao M H. The role of transition metal and nitrogen in metal-N-C composites for hydrogen evolution reaction at universal pHs[J]. J. Phys. Chem. C, 2016,120(51):29047-29053.
doi: 10.1021/acs.jpcc.6b11782 URL |
[14] |
Shahraei A, Moradabadi A, Martinaiou I, Lauterbach S, Klemenz S, Dolique S, Kleebe H J, Kaghazchi P, Kramm U I. Elucidating the origin of hydrogen evolution reaction activity in mono- and bimetallic metal- and nitrogen-doped carbon catalysts (Me-N-C)[J]. ACS Appl. Mater. Interfaces, 2017,9(30):25184-25193.
doi: 10.1021/acsami.7b01647 URL |
[15] |
Zhu Z J, Chen C M, Cai M Q, Cai Y, Ju H X, Hu S W, Zhang M. Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates[J]. Mater. Res. Bull., 2019,114:161-169.
doi: 10.1016/j.materresbull.2019.02.029 URL |
[16] |
Chen L Y, Liu X F, Zheng L R, Li Y C, Guo X, Wan X, Liu Q T, Shang J X, Shui J L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts[J]. Appl. Catal. B Environ., 2019,256:117849.
doi: 10.1016/j.apcatb.2019.117849 URL |
[17] |
Ai K L, Li Z L, Cui X Q. Scalable preparation of sized-controlled Co-N-Celectrocatalyst for efficient oxygen reduction reaction[J]. J. Power Sources, 2017,368:46-56.
doi: 10.1016/j.jpowsour.2017.09.067 URL |
[18] | Sebastián D, Serov A, Artyushkova K, Gordon J, Atanass-ov P, Aricò A S, Baglio V. High performance and cost-effective direct methanol fuel cells: Fe-NC methanol-tolerant oxygen reduction reaction catalysts[J]. ChemSus-Chem, 2016,9(15):1986-1995. |
[19] |
Wang Y, Pan Y, Zhu L K, Yu H H, Duan B Y, Wang R W, Zhang Z T, Qiu S L. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER[J]. Carbon, 2019,146:671-679.
doi: 10.1016/j.carbon.2019.02.002 |
[20] |
Zhang G X, Chenitz R, Lefèvre M, Sun S, Dodelet J P. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?[J]. Nano Energy, 2016,29:111-125.
doi: 10.1016/j.nanoen.2016.02.038 URL |
[21] |
Zhang G X, Wei Q L, Yang X H, Tavares A C, Sun S H. RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution[J]. Appl. Catal. B Environ., 2017,206:115-126.
doi: 10.1016/j.apcatb.2017.01.001 URL |
[22] |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561.
doi: 10.1103/PhysRevB.47.558 URL |
[23] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-50.
doi: 10.1016/0927-0256(96)00008-0 URL |
[24] |
Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24):17953-17979.
doi: 10.1103/PhysRevB.50.17953 URL |
[25] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3):1758-1775.
doi: 10.1103/PhysRevB.59.1758 URL |
[26] |
Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys. Rev. B, 1999,59(11):7413-7421.
doi: 10.1103/PhysRevB.59.7413 URL |
[27] |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192.
doi: 10.1103/PhysRevB.13.5188 URL |
[28] |
Van Den Bossche M, Skúlason E, Rose-Petruck C, Jónsson H. Assessment of constant-potential implicit solvation calculations of electrochemical energy barriers for H2 evolution on Pt[J]. J. Phys. Chem. C, 2019,123(7):4116-4124.
doi: 10.1021/acs.jpcc.8b10046 |
[29] |
Zhang Q, Asthagiri A. Solvation effects on DFT predictions of ORR activity on metal surfaces[J]. Catal. Today, 2019,323:35-43.
doi: 10.1016/j.cattod.2018.07.036 URL |
[30] |
Liu S Z, White M G, Liu P. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface[J]. J. Phys. Chem. C, 2016,120(28):15288-15298.
doi: 10.1021/acs.jpcc.6b05126 URL |
[31] |
Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson L G M, Nilsson A. Structure and bonding of water on Pt(111)[J]. Phys. Rev. Lett., 2002,89(27):276102.
pmid: 12513221 |
[32] |
Liu K X, Qiao Z, Hwang S, Liu Z Y, Zhang H G, Su D, Xu H, Wu G, Wang G F. Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation[J]. Appl. Catal. B - Environ., 2019,243:195-203.
doi: 10.1016/j.apcatb.2018.10.034 URL |
[33] |
Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. J. Chem. Phys., 2014,140(8):084106.
doi: 10.1063/1.4865107 URL |
[34] |
Petrosyan S A, Rigos A A, Arias T A. Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution[J]. J. Phys. Chem. B, 2005,109(32):15436-15444.
pmid: 16852958 |
[35] |
Valter M, Wickman B, Hellman A. Solvent effects for methanol electrooxidation on gold[J]. J. Phys. Chem. C, 2021,125(2):1355-1360.
doi: 10.1021/acs.jpcc.0c08923 URL |
[36] |
Gauthier J A, Dickens C F, Heenen H H, Vijay S, Ringe S, Chan K. Unified approach to implicit and explicit solvent simulations of electrochemical reaction energetics[J]. J. Chem. Theory Comput., 2019,15(12):6895-6906.
doi: 10.1021/acs.jctc.9b00717 pmid: 31689089 |
[37] |
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004,108(46):17886-17892.
doi: 10.1021/jp047349j URL |
[38] | Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J. Chem. Phys., 2000,113(22):9978-9985. |
[39] | Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000,113(22):9901-9904. |
[40] |
Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths[J]. J. Chem. Phys., 2008,128(13):134106.
doi: 10.1063/1.2841941 pmid: 18397052 |
[41] |
Chen S Q, Zhang N J, Villarrubia C W N, Huang X, Xie L, Wang X Y, Kong X D, Xu H, Wu G, Zeng J, Wang H L. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media[J]. Nano Energy, 2019,66:104164.
doi: 10.1016/j.nanoen.2019.104164 URL |
[42] |
Liu K X, Kattel S, Mao V, Wang G F. Electrochemical and computational study of oxygen reduction reaction on nonprecious transition metal/nitrogen doped carbon nanofibers in acid medium[J]. J. Phys. Chem. C, 2016,120(3):1586-1596.
doi: 10.1021/acs.jpcc.5b10334 URL |
[43] |
Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angew. Chem. Int. Ed., 2006,45(3):402-406.
doi: 10.1002/(ISSN)1521-3773 URL |
[44] |
Yeh K Y, Janik M J. Density functional theory-based electrochemical models for the oxygen reduction reaction: Comparison of modeling approaches for electric field and solvent effects[J]. J. Comput. Chem., 2011,32(16):3399-3408.
doi: 10.1002/jcc.v32.16 URL |
[1] | Ao Zhou, Wei-Jian Guo, Yue-Qing Wang, Jin-Tao Zhang. The Rapid Preparation of Efficient MoFeCo-Based Bifunctional Electrocatalysts via Joule Heating for Overall Water Splitting [J]. Journal of Electrochemistry, 2022, 28(9): 2214007-. |
[2] | Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang. Adjusting the Alloying Degree of Pt3Zn to Improve Acid Oxygen Reduction Activity and Stability [J]. Journal of Electrochemistry, 2022, 28(4): 2106091-. |
[3] | Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang. In Situ Characterization of Electrode Structure and Catalytic Processes in the Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2022, 28(3): 2108531-. |
[4] | Xue Wang, Li Zhang, Chang-Peng Liu, Jun-Jie Ge, Jian-Bing Zhu, Wei Xing. Recent Advances in Structural Regulation on Non-Precious Metal Catalysts for Oxygen Reduction Reaction in Alkaline Electrolytes [J]. Journal of Electrochemistry, 2022, 28(2): 2108501-. |
[5] | Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li. Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production [J]. Journal of Electrochemistry, 2022, 28(10): 2214012-. |
[6] | Xue Sun, Ya-Jie Song, Ren-Long Li, Jia-Jun Wang. Catalytic Effect of Disordered Ru-O Configurations for Electrochemical Hydrogen Evolution [J]. Journal of Electrochemistry, 2022, 28(10): 2214011-. |
[7] | Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai. Copper Nanoparticles In-Situ Anchored on Nitrogen-Doped Carbon for High-Efficiency Oxygen Reduction Reaction Electrocatalyst [J]. Journal of Electrochemistry, 2021, 27(6): 671-680. |
[8] | Li-Li Xu, Dong-Yan Ren, Xiao-Feng Zhao, Yong Yi. Janus-TiNbCO2 for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity [J]. Journal of Electrochemistry, 2021, 27(5): 570-578. |
[9] | Hua Lin, Yi-Jin Wu, Jun-Tao Li, Yao Zhou. One-Pot Synthesis of Fe2O3@Fe-N-C Oxygen Reduction Electrocatalyst and Its Performance for Zinc-Air Battery [J]. Journal of Electrochemistry, 2021, 27(4): 366-376. |
[10] | Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan. DFT Study of Nim@Pt1Aun-m-1 (n=19, 38, 55, 79; m = 1, 6, 13, 19) Core-Shell ORR Catalyst [J]. Journal of Electrochemistry, 2021, 27(4): 357-365. |
[11] | Wei-Yi Zhang, Xian-Yin Ma, Shou-Zhong Zou, Wen-Bin Cai. Recent Advances in Glycerol Electrooxidation on Pt and Pd: from Reaction Mechanisms to Catalytic Materials [J]. Journal of Electrochemistry, 2021, 27(3): 233-256. |
[12] | Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang. Preparation of Co1-xS-MnS@CNTs/CNFs for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2021, 27(3): 301-310. |
[13] | Zhi-Peng Wu, Chuan-Jian Zhong. Pd-Based Electrocatalysts for Oxygen Reduction and Ethanol Oxidation Reactions: Some Recent Insights into Structures and Mechanisms [J]. Journal of Electrochemistry, 2021, 27(2): 144-156. |
[14] | Xiang Qin, Zhong-Qiu Li, Jian-Bin Pan, Jian Li, Kang Wang, Xing-Hua Xia. Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array [J]. Journal of Electrochemistry, 2021, 27(2): 157-167. |
[15] | WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang. Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2020, 26(6): 815-824. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||