Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (2): 168-176. doi: 10.13208/j.electrochem.201247
Special Issue: “电分析与传感”专题文章
• Special Issue of the Journal of Electrochemistry Celebrating 100 Years of Chemistry at Xiamen University • Previous Articles Next Articles
Tesfaye Hailemariam Barkae1,2,3, Mohamed Ibrahim Halawa1,4,5, Tadesse Haile Fereja1,6, Shimeles Addisu Kitte1,7, Xian-Gui Ma1,2, Ye-Quan Chen1, Guo-Bao Xu1,*()
Received:
2021-02-02
Revised:
2021-03-08
Online:
2021-04-28
Published:
2021-03-15
Contact:
Guo-Bao Xu
E-mail:guobaoxu@ciac.ac.cn
Tesfaye Hailemariam Barkae, Mohamed Ibrahim Halawa, Tadesse Haile Fereja, Shimeles Addisu Kitte, Xian-Gui Ma, Ye-Quan Chen, Guo-Bao Xu. Luminol/Sulfamic Acid Electrochemiluminescence and Its Application for Dopamine Detection[J]. Journal of Electrochemistry, 2021, 27(2): 168-176.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.201247
[1] |
Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
doi: 10.1016/j.electacta.2016.02.175 URL |
[2] |
Liu Z Y, Qi W J, Xu G B. Recent advances in electrochemiluminescence[J]. Chem. Soc. Rev., 2015,44(10):3117-3142.
doi: 10.1039/C5CS00086F URL |
[3] |
Richter M M. Electrochemiluminescence (ECL)[J]. Chem. Rev., 2004,104(6):3003-3036.
pmid: 15186186 |
[4] |
Sakura S. Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode[J]. Anal. Chim. Acta, 1992,262(1):49-57.
doi: 10.1016/0003-2670(92)80007-T URL |
[5] |
Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
doi: 10.1016/j.electacta.2016.02.175 URL |
[6] |
Cao Y L, Yuan R, Chai Y Q, Mao L, Niu H, Liu H J, Zhuo Y. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling[J]. Biosens. Bioelectron., 2012,31(1):305-309.
doi: 10.1016/j.bios.2011.10.036 URL |
[7] |
S Shkir M, Riscob B, Ganesh V, et al. Crystal growth, structural, crystalline perfection, optical and mechanical properties of Nd3+ doped sulfamic acid (SA) single crystals [J]. Cryst. Growth, 2013,380:228-235.
doi: 10.1016/j.jcrysgro.2013.06.022 URL |
[8] |
Freeling F, Scheurer M, Sandholzer A, Armbruster D, Nodler K, Schulz M, Ternes T A, Wick A. Under the radar - Exceptionally high environmental concentrations of the high production volume chemical sulfamic acid in the urban water cycle[J]. Water Res., 2020,175:115706.
doi: 10.1016/j.watres.2020.115706 URL |
[9] |
Upadhyay N, Pujar M G, George R P, Philip J. Development of a sulfamic acid-based chemical formulation for effective cleaning of modified 9Cr-1Mo steel steam generator tubes[J]. Trans. Indian Inst. Met., 2020,73(2):343-352.
doi: 10.1007/s12666-019-01852-4 URL |
[10] |
Winum J Y, Scozzafava A, Montero J L, Supuran C T. Sulfamates and their therapeutic potential[J]. Med. Res. Rev., 2005,25(2):186-228.
doi: 10.1002/(ISSN)1098-1128 URL |
[11] | B. Khalili, M. Rimaz, Tondro T. DFT study of N-substituted sulfamic acid derivatives acidity in aqueous media and gas phase[J]. Sci. Iran., 2014,21:2021-2028. |
[12] |
Lin K N, Xu J, Dong X, Huo Y L, Yuan D X, Lin H, Zhang Y B. An automated spectrophotometric method for the direct determination of nitrite and nitrate in seawater: Nitrite removal with sulfamic acid before nitrate reduction using the vanadium reduction method[J]. Microchem. J., 2020,158:105272.
doi: 10.1016/j.microc.2020.105272 URL |
[13] |
Kim D S, Kang E S, Baek S, Choo S S, Chung Y H, Lee D, Min J, Kim T H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays[J]. Sci. Rep., 2018,8(1):14049.
doi: 10.1038/s41598-018-32477-0 URL |
[14] | Egaña L A, Cuevas R A, Baust T B, Parra L A, Leak R K, Hochendoner S, Peña K, Quiroz M, Hong W C, Dorostkar M M, Janz R, Sitte H H, Torres G E. Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3[J]. J. Neurosci. Res., 2009,29(14):4592-4604. |
[15] | Stanwood G D. Chapter 9 - Dopamine and Stress[M] //Fink G (editor), Stress: Physiology, Biochemistry, and Pathology, Academic Press, 2019: 105-114. |
[16] |
Khudaish E A, Al-Ajmi K Y, Al-Harthi S H, Al-Hinai A T. A solid state sensor based polytyramine film modified electrode for the determination of dopamine and ascorbic acid in a moderately acidic solution[J]. J. Electroanal. Chem., 2012,676:27-34.
doi: 10.1016/j.jelechem.2012.04.018 URL |
[17] |
Colín-Orozco E, Ramírez-Silva M T, Corona-Avendaéo S, Romero-Romo M, Palomar-Pardavé M. Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7[J]. Electrochim. Acta, 2012,85:307-313.
doi: 10.1016/j.electacta.2012.08.081 URL |
[18] |
Tang L J, Li S, Han F, Liu L Q, Xu L G, Ma W, Kuang H, Li A K, Wang L B, Xu C L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection[J]. Biosens. Bioelectron., 2015,71:7-12.
doi: 10.1016/j.bios.2015.04.013 URL |
[19] |
Wei X, Zhang Z D, Wang Z H. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization[J]. Microchem. J., 2019,145:55-58.
doi: 10.1016/j.microc.2018.10.004 URL |
[20] | Ankireddy S R, Kim J. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots[J]. Int. J. Nanomedicine, 2015,10:113-119. |
[21] |
Huang H, Bai J, Li J, Lei L L, Zhang W J, Yan S J, Li Y X. Fluorescence detection of dopamine based on the polyphenol oxidase-mimicking enzyme[J]. Anal. Bioanal. Chem., 2020,412(22):5291-5297.
doi: 10.1007/s00216-020-02742-1 pmid: 32564120 |
[22] |
Wu B N, Miao C C, Yu L L, Wang Z Y, Huang C S, Jia N Q. Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine[J]. Sens. Actuators B Chem., 2014,195:22-27.
doi: 10.1016/j.snb.2014.01.012 URL |
[23] |
Stewart A J, Hendry J, Dennany L. Whole blood electrochemiluminescent detection of dopamine[J]. Anal. Chem., 2015,87(23):11847-11853.
doi: 10.1021/acs.analchem.5b03345 URL |
[24] |
Peng H P, Deng H H, Jian M L, Liu A L, Bai F Q, Lin X H, Chen W. Electrochemiluminescence sensor based on methionine-modified gold nanoclusters for highly sensitive determination of dopamine released by cells[J]. Microchim. Acta, 2017,184(3):735-743.
doi: 10.1007/s00604-016-2058-2 URL |
[25] |
Kim Y R, Bong S, Kang Y J, Yang Y, Mahajan R K, Kim J S, Kim H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosens. Bioelectron., 2010,25(10):2366-2369.
doi: 10.1016/j.bios.2010.02.031 URL |
[26] |
Ma X Y, Chao M Y, Wang Z X. Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode[J]. Anal. Methods, 2012,4(6):1687-1692.
doi: 10.1039/c2ay25040c URL |
[27] |
Li Z, Zhang H M, Zha Q B, Zhai C Y, Li W B, Zeng L X, Zhu M S. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black[J]. Microchim. Acta, 2020,187(9):526.
doi: 10.1007/s00604-020-04524-z URL |
[28] |
Venton B J, Cao Q. Fundamentals of fast-scan cyclic vol-tammetry for dopamine detection[J]. Analyst, 2020,145(4):1158-1168.
doi: 10.1039/C9AN01586H URL |
[29] |
Zhao H X, Mu H, Bai Y H, Yu H, Hu Y M. A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection[J]. J. Pharm. Anal., 2011,1(3):208-212.
doi: 10.1016/j.jpha.2011.04.003 URL |
[30] |
Rao P S, Rujikarn N, Luber J M, Tyras D H. A specific sensitive HPLC method for determination of plasma dopamine[J]. Chromatographia, 1989,28(5):307-310.
doi: 10.1007/BF02260781 URL |
[31] |
Wen D, Liu W, Herrmann A K, Haubold D, Holzschuh M, Simon F, Eychmüller A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles[J]. Small, 2016,12(18):2439-2442.
doi: 10.1002/smll.201503874 URL |
[32] |
Kong B, Zhu A W, Luo Y P, Tian Y, Yu Y Y, Shi G Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition[J]. Angew. Chem. Int. Ed., 2011,50(8):1837-1840.
doi: 10.1002/anie.v50.8 URL |
[33] |
Kaya M, Volkan M. New approach for the surface enhanced resonance raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid[J]. Anal. Chem., 2012,84(18):7729-7735.
doi: 10.1021/ac3010428 URL |
[34] |
Figueiredo M L B, Martin C S, Furini L N, Rubira R J G, Batagin-Neto A, Alessio P, Constantino C J L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species[J]. Appl. Surf. Sci., 2020,522:146466.
doi: 10.1016/j.apsusc.2020.146466 URL |
[35] |
Kitte S A, Wang C, Li S P, Zholudov Y, Qi L M, Li J P, Xu G B. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant[J]. Anal. Bioanal. Chem., 2016,408(25):7059-7065.
doi: 10.1007/s00216-016-9409-z URL |
[36] |
Hui P, Zhang L, Gao W Y, Zuo H J, Qi L M, Kitte S A, Li Y H, Xu G B. Detection of sodium dehydroacetate by Tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence[J]. ChemElectroChem., 2017,4(7):1702-1707.
doi: 10.1002/celc.v4.7 URL |
[37] |
Fereja T H, Wang C, Liu F S, Guan Y R, Xu G B. A high-efficiency cathodic sodium nitroprusside/luminol/H2O2 electrochemiluminescence system in neutral media for the detection of sodium nitroprusside, glucose, and glucose oxidase[J]. Analyst, 2020,145(20):6649-6655.
doi: 10.1039/D0AN01178A URL |
[38] |
Bancirova M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues[J]. Luminescence, 2011,26(6):685-688.
doi: 10.1002/bio.1296 pmid: 21491580 |
[39] |
Gao W Y, Wang C, Muzyka K, Kitte S A, Li J P, Zhang W, Xu G B. Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector[J]. Anal. Chem., 2017,89(11):6160-6165.
doi: 10.1021/acs.analchem.7b01000 URL |
[40] |
Fereja T H, Kitte S A, Gao W Y, Yuan F, Snizhko D, Qi L M, Nsabimana A, Liu Z Y, Xu G B. Artesunate-luminol chemiluminescence system for the detection of hemin[J]. Talanta, 2019,204:379-385.
doi: 10.1016/j.talanta.2019.06.007 URL |
[41] |
Buettner G R, Ng C F, Wang M, Rodgers V G J, Schafer F Q. A new paradigm: Manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state[J]. Free Radical Biol. Med., 2006,41(8):1338-1350.
doi: 10.1016/j.freeradbiomed.2006.07.015 URL |
[42] |
Khaket T P, Ahmad R. Biochemical studies on hemoglobin modified with reactive oxygen species (ROS)[J]. Appl. Biochem. Biotechnol., 2011,164(8):1422-1430.
doi: 10.1007/s12010-011-9222-2 URL |
[43] |
Rowley D, Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease[J]. Clin. Sci., 1983,64(6):649-653.
pmid: 6301745 |
[44] | Whitman C L. Titrimetric determination of sulfamic acid[J]. Anal. Methods, 1957,29(11):1684-1685. |
[45] |
Wahba M E K, El-Enany N, Belal F. Application of the Stern-Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations[J]. Anal. Methods, 2015,7(4):10445-10451.
doi: 10.1039/C3AY42093K URL |
[46] |
Gong A Q, Zhu X S, Hu Y Y, Yu S H. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application[J]. Talanta, 2007,73(4):668-673.
doi: 10.1016/j.talanta.2007.04.041 URL |
[47] |
Parajuli S, Jing X H, Miao W J. Electrogenerated chemiluminescence (ECL) quenching of the Ru(bpy)32+/TPrA system by the explosive TNT[J]. Electrochim. Acta, 2015,180:196-201.
doi: 10.1016/j.electacta.2015.08.107 URL |
[1] | Xiang Qin, Zhong-Qiu Li, Jian-Bin Pan, Jian Li, Kang Wang, Xing-Hua Xia. Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array [J]. Journal of Electrochemistry, 2021, 27(2): 157-167. |
[2] | XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites [J]. Journal of Electrochemistry, 2020, 26(6): 890-899. |
[3] | BAO Lei, PANG Dai-Wen. Electrochemical Engineering of Carbon Nanodots [J]. Journal of Electrochemistry, 2020, 26(5): 639-647. |
[4] | WANG Lai-yu, XI Xin, WU Dong-qing, LIU Xiong-yu, JI Wei, LIU Rui-li. Ordered Mesoporous Carbon/Graphene/Nickel Foam for Flexible Dopamine Detection with Ultrahigh Sensitivity and Selectivity [J]. Journal of Electrochemistry, 2020, 26(3): 347-358. |
[5] | LEI Gang, LIU Yang. Research Progresses in Structural Modulation and Electrochemiluminescence of Supertetrahedral Chalcogenide Clusters [J]. Journal of Electrochemistry, 2019, 25(3): 349-362. |
[6] | GUAN Li-hao, WANG Chao, ZHANG Wang, CAI Yu-lu, LI Kai, LIN Yu-qing. A Facile Strategy for Two-Step Fabrication of Gold Nanoelectrode for in Vivo Dopamine Detection [J]. Journal of Electrochemistry, 2019, 25(2): 244-251. |
[7] | ZHANG Hui-fang, CHEN Yi-ting, LUO Fang, LIN Zhen-yu, CHEN Guo-nan. Recent Progress of Electrochemiluminescence Sensors Based on Electrically Heated Electrode [J]. Journal of Electrochemistry, 2019, 25(2): 172-184. |
[8] | ZHANG Ya-lin, CHEN Chi, ZOU Liang-liang, ZOU Zhi-qing, YANG Hui. Fe-N Doped Hollow Carbon Nanospheres Linked by Carbon Nanotubes for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2018, 24(6): 726-732. |
[9] | DONG Peng-fei, LI Na, ZHAO Hai-yan, CUI Min, ZHANG Cong, REN Ju-jie,JI Xue-ping. Synthesis of Keggin Polyoxometalates Modified Carbon Paste Electrode as A Sensor for Dopamine Detection [J]. Journal of Electrochemistry, 2018, 24(5): 555-562. |
[10] | WANG Yan-feng, LUO Di, SHAN Duo-liang, LU Xiao-quan*. Cathodic Electrochemiluminescence of Meso-tetra(4-sulfophenyl)porphyrin/Potassium Peroxydisulfate System [J]. Journal of Electrochemistry, 2017, 23(3): 307-315. |
[11] | LIAO Ni, ZHUO Ying, YUAN Ruo. Electrochemiluminescence Immunosensor Based on Platinum Nanoparticles for the Determination of Apolipoprotein A1 [J]. Journal of Electrochemistry, 2016, 22(3): 299-305. |
[12] | PENG Hua-ping, YU Mei-ling, LIU Xin, LIU Pan, CHEN Wei, LIU Ai-lin, LIN Xin-hua*. Fabrication of Riboflavin Electrochemical Sensor Based on Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode [J]. Journal of Electrochemistry, 2016, 22(1): 43-48. |
[13] | WU Mei-sheng, XU Jing-juan*, CHEN Hong-yuan. Electrochemiluminescence Assay Based on Bipolar Electrode for Bioanalysis [J]. Journal of Electrochemistry, 2015, 21(1): 1-7. |
[14] | WANG Hai-jun, XIAO Li-juan, HE Ying, JIANG Xin-ya, YUAN Ya-li, ZHUO Ying, CHAI Ya-qin, YUAN Ruo*. Electrochemiluminescence Biosensors Based on the Signal Amplification of Co-reactants [J]. Journal of Electrochemistry, 2015, 21(1): 13-21. |
[15] | ZHOU Zhen-yu, XU Lin-ru, SU Bin*. Electrochemiluminescence Imaging Focusing: Array Analysis and Visualization of Latent Fingerprints [J]. Journal of Electrochemistry, 2014, 20(6): 506-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||