Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (2): 177-184. doi: 10.13208/j.electrochem.201242
Special Issue: “下一代二次电池”专题文章
• Special Issue of the Journal of Electrochemistry Celebrating 100 Years of Chemistry at Xiamen University • Previous Articles Next Articles
Zhen-Lang Liang, Yao Yang, Hao Li, Li-Ying Liu, Zhi-Cong Shi*()
Received:
2021-01-02
Revised:
2021-01-22
Online:
2021-04-28
Published:
2021-02-18
Contact:
Zhi-Cong Shi
E-mail:zhicong@gdut.edu.cn
Zhen-Lang Liang, Yao Yang, Hao Li, Li-Ying Liu, Zhi-Cong Shi. Lithium Storage Performance of Hard Carbons Anode Materials Prepared by Different Precursors[J]. Journal of Electrochemistry, 2021, 27(2): 177-184.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.201242
Figure 4
(A)-(C). Charge-discharge curves of different hard carbon materials at 50 mA·g-1 current density; (D) Rate capability of different hard carbon materials at various current densities from 50 to 2000 mA·g-1; (E) Cycling performance curves of different hard carbon materials at 200 mA·g-1 current density. (color on line)
Figure 6
(A)-(C). CV profiles of different hard carbon materials at different scan rates between 0.1 to 1.0 mV·s-1; (D)-(F). Liner relationship between current and scan rate in logarithmic format for different hard carbon materials; (G)-(I). Capacitive contribution of different hard carbon materials at the scan rate of 0.4 mV·s-1; (J)-(L). Contribution ratio of adsorption capacity at different scan rates for different hard carbon materials. (color on line)
[1] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batterie[J]. Nature, 2001,414(6861):359-367.
pmid: 11713543 |
[2] | Li Q X(李巧霞), Mao H M(毛宏敏), Liu M S(刘明爽), Xu Q J(徐群杰). Status quo and prospect in hard carbon anode material for lithium ion battery[J]. J. Shanghai Univ. Electric. Power(上海电力学院学报) 2014,30(1):75-78. |
[3] | Guan Y B(官亦标), Shen J R(沈进冉), Li K L(李康乐), Xu B(徐斌). Research progress on capacitive liithium-ion battery[J]. Energy Storage Sci. & Technol.(储能科学与技术) 2019,8(5):799-806. |
[4] | Wu M H(武明昊), Chen J(陈剑), Wang C(王崇), Yi B L(衣宝廉). Research progress in anode materials for Li-ion battery[J]. Battery(电池) 2011,4(4):222-225. |
[5] | Yang G(杨果), Ma Z(马壮), Yang S B(杨绍斌), Shen D(沈丁). Synjournal of phenolic resin hard carbon with low specific surface area and its electrochemical properties[J]. Mater. Rev.(材料导报) 2019,33(22):3820-3824. |
[6] |
Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Li T Q, Han Y, Wang Y S, Tian J, Lin N, Qian Y T. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Adv. Energy Mater., 2019,9(34):1901676.
doi: 10.1002/aenm.v9.34 URL |
[7] |
Gong J, Wu H, Yang Q. Structural and electrochemical properties of disordered carbon prepared by the pyrolysis of poly(p-phenylene) below 1000 ℃ for the anode of a lithium-ion battery[J]. Carbon, 1999,37(9):1409-1416.
doi: 10.1016/S0008-6223(99)00002-0 URL |
[8] |
Han Y J, Hwang J U, Kim K S, Kim J H, Lee J D, Im J S. Optimization of the preparation conditions for pitch based anode to enhance the electrochemical properties of LIBs[J]. J. Ind. Eng. Chem., 2019,73(73):241-247.
doi: 10.1016/j.jiec.2019.01.031 URL |
[9] | Guo Z H, Wang C Y, Chen M M, Li M W. Hard carbon derived from coal tar pitch for use as the anode material in lithium ion batteries[J]. Int. J. Electrochem. Sci., 2013,8(8):2702-2709. |
[10] |
Concheso A, Santamaría R, Granda M, Menendez R, Jimenez-Mateos J M, Alcantara R, Lavela P, Tirado J L. Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries[J]. Electrochim. Acta, 2005,50(5):1225-1232.
doi: 10.1016/j.electacta.2004.07.054 URL |
[11] |
Fromm O, Heckmann A, Rodehorst U C, Frerichs J, Becker D, Winter M, Placke T. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018,128(128):147-163.
doi: 10.1016/j.carbon.2017.11.065 URL |
[12] |
Nishi Y. Carbonaceous materials for lithium ion secondary battery anodes[J]. Mol. Cryst. Liq. Cryst., 2000,340(1):419-424.
doi: 10.1080/10587250008025503 URL |
[13] | Yan J(颜剑), Su Y S(苏玉长), Su J T(苏继桃), Lu P T(卢普涛). Research progress on anode materials for lithium-ion batteries[J]. Chinese Battery Ind.(电池工业) 2006,11(4):277-281. |
[14] | Chen K H, Vishwas G, Min J N, Wied M, Muller S, Wood V, Sakamoto J, Thornton K, Dasgupta N P. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes[J]. Adv. Energy Mater., 2020,9(13):2003336. |
[15] |
Yu H Y, Liang H J, Gu Z Y, Meng Y F, Yang M, Yu M X, Zhao C D, Wu X L. Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries[J]. Electrochim. Acta, 2020,361(361):137041.
doi: 10.1016/j.electacta.2020.137041 URL |
[16] |
Lin X Y, Liu Y Z, Tan H, Zhang B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020,157(157):316-323.
doi: 10.1016/j.carbon.2019.10.045 URL |
[17] |
Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Sodium ion insertion in hollow carbon nanowires for battery[J]. Nano Lett., 2012,12(7):3783-3787.
doi: 10.1021/nl3016957 URL |
[18] |
Saurel D, Orayech B, Xiao B W, Carriazo D, Li X L, Rojo T. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Adv. Energy Mater., 2018,8(17):1703268.
doi: 10.1002/aenm.v8.17 URL |
[19] |
Xiao L F, Lu H Y, Fang Y J, Sushko M L, Cao Y L, Ai X P, Yang H X, Liu J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Adv. Energy Mater., 2018,8(20):1703238.
doi: 10.1002/aenm.201703238 URL |
[20] |
Qiu S, Xiao L F, Sushko M L, Han K S, Shao Y Y, Yan M Y, Liang X M, Mai L Q, Feng J W, Cao Y L, Ai X P, Yang H X, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv. Energy Mater., 2017,7(17):1700403.
doi: 10.1002/aenm.201700403 URL |
[21] |
Alvin S, Setiadi H S, Hwang J, Chang W, Kwak S K, Kim J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Adv. Energy Mater., 2020,10(20):2000283.
doi: 10.1002/aenm.v10.20 URL |
[1] | Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su. Structural Degradation of Ni-Rich Layered Oxide Cathode for Li-Ion Batteries [J]. Journal of Electrochemistry, 2022, 28(2): 2108431-. |
[2] | Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang. Functional Sulfate Electrolytes Enable the Enhanced Cycling Stability of NaTi2(PO4)3/C Anode Material for Aqueous Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2021, 27(6): 605-613. |
[3] | Xue-Fan Cai, Sheng Sun. Cyclic Voltammetric Simulations on Batteries with Porous Electrodes [J]. Journal of Electrochemistry, 2021, 27(6): 646-657. |
[4] | Yi Peng, Wei Zhang, Fang-Zhen Zuo, Hao-Ying Lü, Kai-Jun Hong. Storage Performance and Mechanism of MoSe2 Nanospheres in Lithium and Magnesium Ion Batteries [J]. Journal of Electrochemistry, 2021, 27(4): 456-464. |
[5] | Kai Wu. Syntheses of Na3V2(PO4)2O2F as a Cathode for Sodium Ion Battery Application [J]. Journal of Electrochemistry, 2021, 27(1): 56-62. |
[6] | ZHANG Ze-Yang, SUN Lan, LIN Chang-Jian. Preparations and Photoelectrochemical Performances of RGO-TiO2 Nanotubes Arrays [J]. Journal of Electrochemistry, 2020, 26(6): 844-849. |
[7] | WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling [J]. Journal of Electrochemistry, 2020, 26(6): 777-788. |
[8] | DUAN Ming-tao, MENG Yan-shuang, ZHANG Hong-shuai. Preparations and Sodium Storage Properties of Ni3S2@CNT Composite [J]. Journal of Electrochemistry, 2020, 26(6): 850-858. |
[9] | CHEN Jia-hui, ZHONG Xiao-bin, HE Chao, WANG Xiao-xiao, XU Qing-chi, LI Jian-feng. Synthesis and Raman Study of Hollow Core-Shell Ni1.2Co0.8P@N-C as an Anode Material for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(3): 328-337. |
[10] | WANG Fei, ZHAI Huan-huan, WANG Du-dan, LI Yu-peng, CHEN Kang-hua. Structures and Electrochemical Properties of Sn-Cl Co-Doped Li2MnO3 as Positive Materials for Lithium Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(1): 148-155. |
[11] | DONG Qing-yu, CHU Yan-li, SHEN Yan-bin, CHEN Li-wei. Atomic Force Microscopic Characterization of Solid Electrolyte Interphase in Lithium Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(1): 19-31. |
[12] | ZHANG Qing-nuan, ZHANG Fang-fang, LI Hong-xia, YANG Bing-jun, LI Xiao-cheng, YANG Juan. Lithium Storage Performance of High Capacity Material Si@CPZS in Lithium Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(1): 121-129. |
[13] | WANG Fan-fan, LIU Xiao-bin, CHEN Long, CHEN Cheng-cheng, LIU Yong-chang, FAN Li-zhen. Recent Progress in Key Materials for Room-Temperature Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 55-76. |
[14] | SUN Meng-lei, ZHANG Da-qi, FENG Jin-kui, NI Jiang-feng. Recent Progress in Vanadium-Based Electrode Materials [J]. Journal of Electrochemistry, 2019, 25(1): 45-54. |
[15] | YAN Chong, KOU Hua-ri, YAN Bo, LIU Xiao-jing, LI De-jun, LI Xi-fei. Ni/Mn3O4/NiMn2O4 Double-Shelled Hollow Spheres Embedded into Reduced Graphene Oxide as Advanced Anodes for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 112-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||