Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (5): 628-638. doi: 10.13208/j.electrochem.200653
Special Issue: “电催化和燃料电池”专题文章
• Memorial Special Issue for Professor Chuansin Cha (Guest Editor: Professor Xinping Ai,Wuhan University) • Previous Articles Next Articles
DENG Bo-wen, YIN Hua-yi, WANG Di-hua*()
Received:
2020-07-17
Revised:
2020-09-16
Online:
2020-10-28
Published:
2020-12-04
Contact:
WANG Di-hua
E-mail:wangdh@whu.edu.cn
CLC Number:
DENG Bo-wen, YIN Hua-yi, WANG Di-hua. Highly Efficient CO2 Utilization via Molten Salt CO2 Capture and Electrochemical Transformation Technology[J]. Journal of Electrochemistry, 2020, 26(5): 628-638.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.200653
Tab. 1
The equilibrium pressures of CO2 in MyO-containing molten carbonates and the Nernstian potentials for different cathodic reactions at 450 oC.
Electrolyte | Equilibrium pressure of CO2/ (Pa, aMyO=0.001 mol·L-1) | Deposition potential of metal EM /V(vs. CO2-O2/CO32-) | Deposition potential of C EC /V(vs. CO2-O2/CO32-) | Evolution potential of CO ECO /V(vs. CO2-O2/CO32-) |
---|---|---|---|---|
Li2CO3 | 1.039 | -3.183 | -1.883 | -2.284 |
Na2CO3 | 2.462×10-8 | -2.757 | -2.681 | -3.378 |
K2CO3 | 2.054×10-13 | -2.829 | -3.251 | -4.107 |
CaCO3 | 2.309×103 | -3.230 | -1.523 | -1.804 |
BaCO3 | 1.793×10-3 | -3.266 | -2.181 | -2.681 |
Fig. 3
(A) Cyclic voltammogram on Ni working electrode in molten Li2CO3-Na2CO3-K2CO3 at 450 oC with a scan rate of 100 mV·s-1[19]. (B) Cyclic voltammograms on HGB electrode in molten Li2CO3-Na2CO3-K2CO3 under different flow rates of CO2, with a scan rate of 100 mV·s-1[20]. Schematic illustration of the hollow gas bubbling (HGB) electrode: (C) A photo showing the HGB electrode with detail of its joint connection; (D) The depolarization mechanism of the HGB electrode.
Fig. 6
(A) Anodic behaviors of Ni working electrode in molten Li2CO3-Na2CO3-K2CO3 under different working temperatures[37]. (B) Anodic behaviors of different working electrodes at 650 oC[42]. (C) Real-time monitored E-t curve during galvanostatic electrolysis using Pt-coated Ti anode at 650 oC[42].
Tab. 2
The theoretical cell voltage of CO2 reduction in molten Li2CO3 and energy consumption for production 1 kg-carbon with energy efficiency of 50%
T/oC | ΔG/(kJ·mol-1) 2Li2CO3=2CO(g)+O2(g)+Li2O | ECO /V | ΔG/(kJ·mol-1) Li2CO3=C+O2(g)+Li2O | EC /V | Energy consumption/(kWh·kg-1-C)@50%EE |
---|---|---|---|---|---|
50 | 855.157 | 2.216 | 566.998 | 1.469 | 26.25 |
450 | 660.625 | 1.712 | 505.931 | 1.311 | 23.42 |
750 | 527.734 | 1.367 | 466.199 | 1.208 | 21.58 |
Tab. 3
Average amounts of equivalent CO2 emission generated from different electricity sources and the corresponding CO2 reduction efficiency for powering MSCC-ET.
Electricity source | *Average amount of equivalent CO2 emission in 50th percentile[ | CO2 reduction efficiency/% (6.4 kWh·kg-1-CO2@50%EE) |
---|---|---|
Hydroelectric | 4 | 97.44 |
Wind | 12 | 92.32 |
Nuclear | 16 | 89.76 |
Biomass | 18 | 88.48 |
Solar thermal | 22 | 85.92 |
Geothermal | 45 | 71.20 |
Solar PV | 46 | 70.56 |
[1] | Yang Y, Ajmal S, Zheng X Y, et al. Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction[J]. Sustainable Energy & Fuels, 2018,2(3):510-537. |
[2] |
De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynjournal to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
doi: 10.1126/science.aav3506 URL pmid: 31023896 |
[3] | Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019,12(5):1442-1453. |
[4] |
Jiang R, Gao M X, Mao X H, et al. Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process[J]. Current Opinion in Electrochemistry, 2019,17:38-46.
doi: 10.1016/j.coelec.2019.04.011 URL |
[5] |
Bartlett H E, Johnson K E. Electrochemical studies in molten Li2CO3-Na2CO3[J]. Journal of The Electrochemical Society, 1967,114(5):457-461.
doi: 10.1149/1.2426627 URL |
[6] | Yin H Y, Mao X H, Tang D Y, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energy & Environmental Science, 2013,6(5):1538-1545. |
[7] |
Ijije H V, Sun C, Chen G Z. Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties[J]. Carbon, 2014,73:163-174.
doi: 10.1016/j.carbon.2014.02.052 URL |
[8] |
Ren J, Li F F, Lau J, et al. One-pot synjournal of carbon nanofibers from CO2[J]. Nano Letters, 2015,15(9):6142-6148.
doi: 10.1021/acs.nanolett.5b02427 URL pmid: 26237131 |
[9] |
Hu L W, Song Y, Ge J B, et al. Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts[J]. Journal of Materials Chemistry A, 2015,3(42):21211-21218.
doi: 10.1039/C5TA05127D URL |
[10] | Wang D H(汪的华), Chen Z(陈政). Innovation in molten salt electrochemistry[J]. Journal of the Electrochemistry (电化学), 2005,11(2):119-124. |
[11] | Xiao W(肖巍), Zhu H(朱华), Yin H Y(尹华意), et al. Novel molten-salt electrolysis processes towards low-carbon metallurgy[J]. Journal of the Electrochemistry (电化学), 2012,18(3):193-200. |
[12] | Yin H Y, Wang D H. Electrochemical valorization of carbon dioxide in molten salts[M] //Li L, Wong-Ng W, Huang K, et al. Materials and processes for CO2 capture, conversion, and sequestration. New York: John Wiley & Sons, Inc., 2018: 267-295. |
[13] | Deng B W(邓博文), Song Y Q(宋宇桥), Mao X H(毛旭辉), et al. Capture and electrochemical conversion of CO2 in high-temperature molten salts[J]. Journal of Wuhan University(Natural Science Edition) (武汉大学学报(理学版)), 2016,62(1):1-8. |
[14] |
Deng B W, Tang J J, Mao X H, et al. Kinetic and thermodynamic characterization of enhanced carbon dioxide absorption process with lithium oxide-containing ternary molten carbonate[J]. Environmental Science & Technology, 2016,50(19):10588-10595.
doi: 10.1021/acs.est.6b02955 URL pmid: 27602783 |
[15] |
Deng B W, Chen Z G, Gao M X, et al. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition[J]. Faraday Discussions, 2016,190:241-258.
doi: 10.1039/c5fd00234f URL pmid: 27193751 |
[16] |
Wakamatsu T, Uchiyama T, Natsui S, et al. Solubility of gaseous carbon dioxide in molten LiCl-Li2O[J]. Fluid Phase Equilibria, 2015,385:48-53.
doi: 10.1016/j.fluid.2014.10.046 URL |
[17] |
Hu L W, Song Y, Ge J B, et al. Electrochemical deposition of carbon nanotubes from CO2 in CaCl2-NaCl-based melts[J]. Journal of Materials Chemistry A, 2017,5(13):6219-6225.
doi: 10.1039/C7TA00258K URL |
[18] |
Tang D Y, Yin H Y, Mao X H, et al. Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode[J]. Electrochimica Acta, 2013,114:567-573.
doi: 10.1016/j.electacta.2013.10.109 URL |
[19] |
Gao M X, Deng B W, Chen Z G, et al. Cathodic reaction kinetics for CO2 capture and utilization in molten carbonates at mild temperatures[J]. Electrochemistry Communications, 2018,88:79-82.
doi: 10.1016/j.elecom.2018.02.003 URL |
[20] |
Gao M X, Deng B W, Chen Z G, et al. Enhanced kinetics of CO2 electro-reduction on a hollow gas bubbling electrode in molten ternary carbonates[J]. Electrochemistry Communications, 2019,100:81-84.
doi: 10.1016/j.elecom.2019.01.026 URL |
[21] | Deng B W, Gao M X, Yu R, et al. Critical operating conditions for enhanced energy-efficient molten salt CO2 capture and electrolytic utilization as durable looping applications[J]. Applied Energy, 2019,255:113862. |
[22] | Gao M X, Chen Z G, Deng B W, et al. (Invited) Electrochemical deposition of carbon materials in molten salts[J]. ECS Transactions, 2017,80(10):791-799. |
[23] | Gu Y X(谷雨星), Yang J(杨娟), Wang D H(汪的华). Electrochemical features of carbon prepared by molten salt electro-reduction of CO2[J]. Acta Physico-Chimica Sinica (物理化学学报), 2018,35(2):208-214. |
[24] | Tang J J, Deng B W, Xu F, et al. The lithium storage performance of electrolytic-carbon from CO2[J]. Journal of Power Sources, 2017,341:419-426. |
[25] | Tang D Y, Dou Y P, Yin H Y, et al. The capacitive performances of carbon obtained from the electrolysis of CO2 in molten carbonates: effects of electrolysis voltage and temperature[J]. Journal of Energy Chemistry, 2019. DOI: 10.1016/j.jechem.2019.11.006. |
[26] | Mao X H, Yan Z P, Sheng T, et al. Characterization and adsorption properties of the electrolytic carbon derived from CO2 conversion in molten salts[J]. Carbon, 2017,111:162-172. |
[27] |
Jiang D, Yang J, Wang D H. Green carbon material for organic contaminants adsorption[J]. Langmuir, 2020,36(12):3141-3148.
doi: 10.1021/acs.langmuir.9b03811 URL pmid: 32146816 |
[28] | Chen Z G, Gu Y X, Du K F, et al. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt[J]. Electrochimica Acta, 2017,253:248-256 |
[29] | Ge J B, Wang S, Zhang F, et al. Electrochemical preparation of carbon films with a MO2C interlayer in LiCl-NaCl-Na2CO3 melts[J]. Applied Surface Science, 2015,347:401-405. |
[30] | Chen Z G, Deng B W, Du K F, et al. Flue-gas-derived sulfur-doped carbon with enhanced capacitance[J]. Advanced Sustainable Systems, 2017,1(6):1700047. |
[31] | Chen Z G, Gu Y X, Hu L Y, et al. Synjournal of nanostructured graphite: via molten salt reduction of CO2 and SO2 at a relatively low temperature[J]. Journal of Materials Chemistry A, 2017,5(39):20603-20607. |
[32] | Deng B W, Tang J J, Gao M X, et al. Electrolytic synjournal of carbon from the captured CO2 in molten LiCl-KCl-CaCO3: critical roles of electrode potential and temperature for hollow structure and lithium storage performance[J]. Electrochimica Acta, 2018,259:975-985. |
[33] | Deng B W, Mao X H, Xiao W, et al. Microbubble effect-assisted electrolytic synjournal of hollow carbon spheres from CO2[J]. Journal of Materials Chemistry A, 2017,5(25):12822-12827. |
[34] |
Hu L W, Song Y, Jiao S Q, et al. Direct conversion of greenhouse gas CO2 into graphene via molten salts electrolysis[J]. ChemSusChem, 2016,9(6):588-594.
URL pmid: 26871684 |
[35] | Wu H G, Liu Y, Ji D Q, et al. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts[J]. Journal of Power Sources, 2017,362:92-104. |
[36] | Liu Y, Yuan D D, Ji D Q, et al. Syngas production: diverse H2/CO range by regulating carbonates electrolyte composition from CO2/H2O: via co-electrolysis in eutectic molten salts[J]. RSC Advances, 2017,7(83):52414-52422. |
[37] | Du K F, Zheng K Y, Chen Z G, et al. Unusual temperature effect on the stability of nickel anodes in molten carbonates[J]. Electrochimica Acta, 2017,245:402-408. |
[38] | Zheng K Y, Du K F, Cheng X H, et al. Nickel-iron-copper alloy as inert anode for ternary molten carbonate electrolysis at 650oC[J]. Journal of The Electrochemical Society, 2018,165(11):E572-E577. |
[39] | Zheng K Y, Cheng X H, Dou Y P, et al. Electrolytic production of nickel-cobalt magnetic alloys from solid oxides in molten carbonates[J]. Journal of The Electrochemical Society, 2017,164(13):E422-E427. |
[40] | Cheng X H, Yin H Y, Wang D H. Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3[J]. Corrosion Science, 2018,141:168-174. |
[41] | Wang P L, Du K F, Dou Y P, et al. Corrosion behaviour and mechanism of nickel anode in SO42- containing molten Li2CO3-Na2CO3-K2CO3[J]. Corrosion Science, 2020,166:108450. |
[42] | Du K F, Yu R, Gao M X, et al. Durability of platinum coating anode in molten carbonate electrolysis cell[J]. Corrosion Science, 2019,153:12-18. |
[43] | Moomaw W, Burgherr P, Heath G, et al. Annex II: Meth-odology[M]//Edenhofer O, Pichs-Madruga R, Sokona Y, et al. IPCC special report on renewable energy sources and climate change mitigation. Cambridge: Cambridge University Press, 2011: 10-11. |
[1] | Dylan Siltamaki, Shuai Chen, Farnood Rahmati, Jacek Lipkowski, Ai-Cheng Chen. Synthesis and Electrochemical Study of CuAu Nanodendrites for CO2 Reduction [J]. Journal of Electrochemistry, 2021, 27(3): 278-290. |
[2] | Zhi-Hua Zhuang, Wei Chen. Application of Atomically Precise Metal Nanoclusters in Electrocatalysis [J]. Journal of Electrochemistry, 2021, 27(2): 125-143. |
[3] | FAN Jia, HAN Na, LI Yan-guang. Electrochemical Carbon Dioxide Reduction in Flow Cells [J]. Journal of Electrochemistry, 2020, 26(4): 510-520. |
[4] | LI Yi-hang, XIA Chang-rong. Recent Advances of CO2 Electrochemical Reduction in Solid Oxide Electrolysis Cells [J]. Journal of Electrochemistry, 2020, 26(2): 162-174. |
[5] | SARTIN Matthew M, CHEN Wei, HE Fan, CHEN Yan-xia. Recent Progress in the Mechanistic Understanding of CO2 Reduction on Copper [J]. Journal of Electrochemistry, 2020, 26(1): 41-53. |
[6] | ZHANG Bo, LIU Jia, LIU Xiao-chen, LI De-jun. Electrochemical Properties of Sulfur in Different Carbon Support Materials [J]. Journal of Electrochemistry, 2019, 25(6): 749-756. |
[7] | ZHOU Rui, HAN Na, LI Yan-guang. Recent Advances in Bismuth-Based CO2 Reduction Electrocatalysts [J]. Journal of Electrochemistry, 2019, 25(4): 445-454. |
[8] | ZHANG Yue-feng, LIU Jian-jun, WEI Zeng-xi, TIAN Xin-xin, MA Jian-min. Single-Layer Oxygen Deficiency δ-MnO2 for Electrochemical CO2 Reduction [J]. Journal of Electrochemistry, 2019, 25(4): 477-485. |
[9] | HUANG Tao, TAO Guang-zhi, YANG Chong-qing, LU Deng, MA Lie, WU Dong-qing. Template Induced Fabrication of Nitrogen Doped Carbon Sheets as Electrode Materials in Supercapacitors [J]. Journal of Electrochemistry, 2017, 23(5): 604-609. |
[10] | YE Jiang-lin, ZHU Yan-wu. Porous Carbon Materials Produced by KOH Activation for Supercapacitor Electrodes [J]. Journal of Electrochemistry, 2017, 23(5): 548-559. |
[11] | Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai. Electrodeposition of RuO2 Layers on TiO2 Nanotube Array toward CO2 Electroreduction [J]. Journal of Electrochemistry, 2017, 23(2): 238-244. |
[12] | LIU Fang-fang,PENG Hong-liang,LIAO Shi-jun. Nitrogen, Fluorine co-doped Silk-derived Carbon for Electrochemical Oxygen Reduction with High Performance in Alkaline Solution [J]. Journal of Electrochemistry, 2016, 22(2): 164-175. |
[13] | HE Shui-jian, CHEN Wei. Progress of Self-supported Supercapacitor Electrode Materials Based on Carbon Substrates [J]. Journal of Electrochemistry, 2015, 21(6): 518-533. |
[14] | CHEN Wei. Special Issue: Electrochemistry of Carbon Materials [J]. Journal of Electrochemistry, 2015, 21(6): 503-504. |
[15] | ZHOU Lan, YU Ai-shui*. Current Status and Prospect of Cathode Materials for Lithium Sulfur Batteries [J]. Journal of Electrochemistry, 2015, 21(3): 211-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||