Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (5): 740-749. doi: 10.13208/j.electrochem.200646
• Memorial Special Issue for Professor Chuansin Cha (Guest Editor: Professor Xinping Ai,Wuhan University) • Previous Articles Next Articles
MENG Quan-hua1, DENG Wen-wen2, LI Chang-ming1,2,3,*()
Received:
2020-06-28
Revised:
2020-09-01
Online:
2020-10-28
Published:
2020-09-21
Contact:
LI Chang-ming
E-mail:ecmli@swu.edu.cn
CLC Number:
MENG Quan-hua, DENG Wen-wen, LI Chang-ming. Facile Synthesis of Nitrogen-Doped Graphene-Like Active Carbon Materials for High Performance Lithium-Sulfur Battery[J]. Journal of Electrochemistry, 2020, 26(5): 740-749.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.200646
Cathode | Current density | Sulfur loading/(mg·cm-2) | Cycle | Capacity/ (mAh·g-1) | Reference |
---|---|---|---|---|---|
S-NPC/G | 1 C | 2.4 | 300 | 608 | [40] |
3DP-FDE | 0.2 C | 3 | 200 | 752 | [41] |
WSAC-8/S | 1 C | 1 | 200 | 800 | [42] |
rGO/PC/S | 1 C | 1.2 | 300 | 848 | [43] |
a-NOSPC/S | 0.5 C | 1.1 | 400 | 740 | [44] |
S-GO/MWCNT | 0.2 C | 1.5-2 | 400 | 670 | [45] |
rNGO/S | 1 C | 1.2 | 200 | 592 | [46] |
S/NDPC-1 | 1 C | 1 | 500 | 541 | [47] |
NGC-8/PS | 0.2 C | 2 | 400 | 910 | This work |
1 C | 2 | 500 | 800 |
[1] |
Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013,42(7):3018-3032.
doi: 10.1039/c2cs35256g URL pmid: 23325336 |
[2] |
Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015,27(12):1980-2006.
URL pmid: 25688969 |
[3] | Rosenman A, Markevich E, Salitra G, et al. Review on Li-sulfur battery systems: an integral perspective[J]. Ad-vanced Energy Materials, 2015,5(16):1500212. |
[4] |
Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013,46(5):1135-1143.
doi: 10.1021/ar3001348 URL pmid: 23054430 |
[5] | Pope M A, Aksay I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials, 2015,5(16):1500124. |
[6] |
Wang J L, He Y S, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials, 2015,27(3):569-575.
doi: 10.1002/adma.201402569 URL pmid: 25256595 |
[7] |
Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012,11(1):19-29.
URL pmid: 22169914 |
[8] |
L. Ma, Zhuang H L L, Wei S Y, et al. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode[J]. ACS Nano, 2016,10(1):1050-1059.
doi: 10.1021/acsnano.5b06373 URL pmid: 26634409 |
[9] |
Fang R P, Zhao S Y, Hou P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016,28(17):3374-3382.
doi: 10.1002/adma.201506014 URL pmid: 26932832 |
[10] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
URL pmid: 19448613 |
[11] | Ji L W, Rao M M, Aloni S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011,4(12):5053-5059. |
[12] |
Yao H B, Zheng G Y, Hsu P C, et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface[J]. Nature Communications, 2014,5:3943.
doi: 10.1038/ncomms4943 URL pmid: 24862162 |
[13] |
Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7:11203.
doi: 10.1038/ncomms11203 URL pmid: 27046216 |
[14] | Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013,1(22):6602-6608. |
[15] | Puthirath A B, Baburaj A, Kato K, et al. High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery[J]. Electrochimica Acta, 2019,306:489-497. |
[16] | Liu X, Huan J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017,29(20):1601759. |
[17] |
Yilmaz G, Peh S B, Zhao D, et al. Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications[J]. Advanced Science, 2019,6(21):1901129.
URL pmid: 31728281 |
[18] | Yang H B, Miao J W, Hung S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advance, 2016,2(4):e1501122. |
[19] | Song J X, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014,24(9):1243-1250. |
[20] |
Zhou G M, Wang D W, Yin L C, et al. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage[J]. ACS Nano, 2012,6(4):3214-3223.
URL pmid: 22424545 |
[21] |
Guo J C, Xu Y H, Wang C S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Letters, 2011,11(10):4288-4294.
doi: 10.1021/nl202297p URL pmid: 21928817 |
[22] |
Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
doi: 10.1021/acs.nanolett.5b01919 URL pmid: 26148211 |
[23] |
Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008,2(3):572-578.
URL pmid: 19206584 |
[24] | Shen W Z, Ren L W, Zhou H, et al. Facile one-pot synjournal of bimodal mesoporous carbon nitride and its function as a lipase immobilization support[J]. Journal of Materials Chemistry, 2011,21(11):3890-3894. |
[25] | Biniak S, Szymański G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997,35(12):1799-1810. |
[26] |
Yang H B, Miao J W, Hung S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advances, 2016,2(4):e1501122.
URL pmid: 27152333 |
[27] | Chen C, Xu G B, Wei X L. A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated Ndoped carbon nanosheet architecture for use in supercapacitors[J]. Journal of Materials Chemistry A, 2016,4(25):9900-9909. |
[28] | Pei F, Lin L L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule, 2017,2(2):323-336. |
[29] | Zhu L, Jiang H T, Ran W X, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries[J]. Applied Surface Science, 2019,489:154-164. |
[30] |
Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
URL pmid: 26148211 |
[31] | Yamin H, Gorenshtein A, Penciner J, et al. Oxidation/reduction mechanismsof polysulfidesin THF solutions[J]. Journal of Electrochemstry Society, 1988,135(5):1045-1048. |
[32] |
Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011,23(47):5641-5644.
doi: 10.1002/adma.201103274 URL pmid: 22052740 |
[33] | Akridge J R, Mikhaylik Y V, White N. Li/S fundamental chemistry and application to high-performance rechargeable batteries[J]. Solid State Ionics, 2004,175(1/4):243-245. |
[34] |
Nelson J, Misra S, Yang Y. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012,134(14):6337-6343.
URL pmid: 22432568 |
[35] |
Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011,50(26):5904-5908.
doi: 10.1002/anie.201100637 URL pmid: 21591036 |
[36] |
Cai J J, Wu C, Zhu Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources, 2017,341:165-174.
doi: 10.1016/j.jpowsour.2016.12.008 URL |
[37] | Tripathi A K, Verma Y L, Singh R K. Thermal, electrical and structural studies on ionic liquid confined in ordered mesoporous MCM-41[J]. Journal of Materials Chemistry A, 2015,3(47):23809-23820. |
[38] | Pei F, An T H, Zang J, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries[J]. Advanced Energy Materials, 2016,6(8):1502539. |
[39] | Zheng Z M, Guo H C, Pei F, et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries[J]. Advanced Functional Materials. 2016,26(48):8952-8959. |
[40] | Chen K, Sun Z H, Fang R P, et al. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707592. |
[41] | Gao X J, Sun Q, Yang X F, et al. Toward a remarkable Li-S battery via 3D printing[J]. Nano Energy, 2019,56:595-603. |
[42] |
Wu P, Chen L H, Xiao S S, et al. Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li-S batteries[J]. Nanoscale, 2018,10(25):11861-11868.
URL pmid: 29897083 |
[43] |
Zhang H, Gao Q M, Qian W W, et al. Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li-S battery cathode[J]. ACS Applied Materials & Interfaces, 2018,10(22):18726-18733.
doi: 10.1021/acsami.8b03806 URL pmid: 29762008 |
[44] | Zhong M E, Guan J D, Sun J C, et al. Carbon nanodot-decorated alveolate N, O, S tridoped hierarchical porous carbon as efficient electrocatalysis of polysulfide conversion for lithium-sulfur batteries[J]. Electrochimica Acta, 2019,299:600-609. |
[45] | Kim J, Kang Y, Song S W, et al. Freestanding sulfur-graphene oxide/carbon composite paper as a stable cathode for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2019,299:27-33. |
[46] | Duan L F, Zhao L J, Cong H, et al. Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li-S batteries[J]. Small, 2019,15(7):1804347. |
[47] | Wang S X, Zou K X, Qian Y X, et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries[J]. Carbon, 2019,144:745-755. |
[1] | ZHANG Wen-hua,CHEN Yao,AI Xin-ping*,CAO Yu-liang. Preparation and Characterization of Sulfur/Mesoprous Carbon Composite Cathodes [J]. Journal of Electrochemistry, 2010, 16(1): 16-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||