Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (6): 850-858. doi: 10.13208/j.electrochem.200426
• Articles • Previous Articles Next Articles
DUAN Ming-tao, MENG Yan-shuang*(), ZHANG Hong-shuai
Received:
2020-04-27
Revised:
2020-06-19
Online:
2020-12-28
Published:
2020-06-24
Contact:
MENG Yan-shuang
E-mail:mengyanshuang@163.com
CLC Number:
DUAN Ming-tao, MENG Yan-shuang, ZHANG Hong-shuai. Preparations and Sodium Storage Properties of Ni3S2@CNT Composite[J]. Journal of Electrochemistry, 2020, 26(6): 850-858.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.200426
Fig. 4
CV curves (A), galvanostatic discharge/charge profiles (B) of Ni3S2@CNT composite; Rate performance (C) and cycling performance curves at a current density of 100 mA·g-1 (D) for pure Ni3S2 sample and Ni3S2@CNT composite. Long-life cycling performance curves of Ni3S2@CNT composite at a current density of 1000 mA·g-1 (E)
Tab. 1
Comparison in electrochemical performances of Ni3S2-based anode materials lately published for SIBs
Electrode | Rate performance | Cycle stability | Ref. |
---|---|---|---|
Ni3S2@CNT | 274.5 mAh·g-1 at 2000 mA·g-1 | 374.5 mAh·g-1 at 100 mA·g-1 after120 cycles | This work |
MoS2/Ni3S2@MoS2 | 283 mAh·g-1 at 5000 mA·g-1 | 207 mAh·g-1 at 5000 mA·g-1 after 400 cycles | [ |
N-doped Ni3S2@C | 371.6 mAh·g-1 at 6400 mA·g-1 | 432.8 mAh·g-1 at 2000 mA·g-1 after 100 cycles | [ |
Ni3S2/Ni@S/C | 223.9 mAh·g-1 at 2000 mA·g-1 | 318.2 mAh·g-1 at 100 mA·g-1 after 120 cycles | [ |
G/Ni-supported Ni3S2 | 136 mAh·g-1 at 200 mA·g-1 | 250 mAh·g-1 at 50 mA·g-1 after 100 cycles | [ |
Ni3S2-PEDOT | 310 mAh·g-1 at 1200 mA·g-1 | - | [ |
[1] | Kim H, Kim H, Ding Z , et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016,6(19):1600943. |
[2] | Chayambuka, Mulder G, Danilov D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018,8(16):1800079. |
[3] | Kim J, Choi M S, Shin K H , et al. Rational design of carbon nanomaterials for electrochemical sodium storage and capture[J]. Advanced Materials, 2019,31(34):1803444. |
[4] | Pu X J, Wang H M, Zhao D , et al. Recent progress in rechargeable sodium-ion batteries: toward high-power applications[J]. Small, 2019,15(32):1805427. |
[5] | Qian J F( 钱江锋), Gao X P( 高学平), Yang H X( 杨汉西 ). Electrochemical Na-storage materials and their applications for Na-ion batteries[J]. Journal of Electrochemistry( 电化学), 2013,19(6):523-529. |
[6] | Wang L G, Wang J, Guo F , et al. Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques[J]. Nano Energy, 2018,43:184-191. |
[7] | Zhu Y J, Wen Y, Fan X L , et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015,9(3):3254-3264. |
[8] | Hou H, Jing M J, Yang Y C , et al. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(6):2971-2977. |
[9] | Hou H S, Qiu X, Wei W F , et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017,7(24):1602898. |
[10] | Wang T, Su D W, Shanmukaraj D , et al. Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms[J]. Electroche mical Energy Reviews, 2018,1(2):200-237. |
[11] | Deng J, Gong Q, Ye H L , et al. Rational synjournal and assembly of Ni3S4 nanorods for enhanced electrochemical sodium-ion storage[J]. ACS Nano, 2018,12(2):1829-1836. |
[12] | Wang Z D, Song W, Yan W , et al. Ni3S2/Ni@S/C composite: Facile synjournal and high performance as the anode for Na-ion batteries[J]. Materials Letters, 2019,238:81-84. |
[13] | Wu Z G, Zhong Y J, Li J T , et al. l-histidine-assisted template-free hydrothermal synjournal of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties[J]. Journal of Materials Chemistry A, 2014,2(31):12361-12367. |
[14] | Han Y, Liu S Y, Cui L , et al. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries[J]. International Journal of Minerals, Metallurgy, Materials, 2018, 25(1): 88-93. |
[15] | Li J, Li J, Yan D , et al. Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance[J]. Journal of Materials Chemistry A, 2018,6(15):6595-6605. |
[16] | Chen Q, Sun S, Zhai T , et al. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery[J]. Advanced Energy Materials, 2018,8(19):1800054. |
[17] | Chang X Q, Ma Y, Yang M , et al. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage[J]. Energy Storage Materials, 2019,23:358-366. |
[18] | Danks A E, Hall S R, Schnepp Z . The evolution of 'sol-gel' chemistry as a technique for materials synjournal[J]. Materials Horizons, 2016,3:91-112. |
[19] | Wang Y, Kong D Z, Shi W H , et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries[J]. Advanced Energy Materials, 2016,6(21):1601057. |
[20] | Lin H L, Liu F, Wang X J , et al. Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity[J]. Electrochimica Acta, 2016,191:705-715. |
[21] | Sainbileg B, Lan Y B, Wang J K , et al. Deciphering anomalous raman features of regioregular poly (3-hexylthiophene) in ordered aggregation form[J]. The Journal of Physical Chemistry C, 2018,122(8):4224-4231. |
[22] | LI Z Q, Gong F, Zhou G , et al. NiS2/reduced graphene oxide nanocomposites for efficient dye sensitized solar cells[J]. The Journal of Physical Chemistry C, 2013,117(13):6561-6566. |
[23] | Li J B, Li J L, Ding Z B , et al. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage[J]. Chemical Engineering Journal, 2019,378:122108. |
[24] | Gao G, Zhang Q, Cheng X B , et al. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries[J]. Scientific Reports, 2015,5:17553. |
[25] | Song X S, Li X F, Bai Z M , et al. Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries[J]. Nano Energy, 2016,26:533-540. |
[26] | Qin W, Chen T Q, Lu T , et al. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries[J]. Journal of Power Sources, 2016,302:202-209. |
[27] | Qu B H, Ma C Z, Ji G , et al. Layered SnS2-reduced graphene oxide composite — a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014,26(23):3854-3859. |
[28] | Wang J, Liu J L, Yang H , et al. MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: constructing an ideal heterostructure for enhanced Na-ion storage[J]. Nano Energy, 2016,20:1-10. |
[29] | Shuang W, Huang H, Kong L J , et al. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes[J]. Nano Energy, 2019,62:154-163. |
[30] | Shang C Q, Dong S M, Zhang S L , et al. A Ni3S2-PEDOT monolithic electrode for sodium batteries[J]. Electrochemistry Communications, 2015,50:24-27. |
[31] | Zhang Z J, Zhao H L, Xia Q , et al. High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries[J]. Electrochimica Acta, 2016,211:761-767. |
[32] | Hang T, Mukoyama D, Nara H , et al. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode[J]. Journal of Power Sources, 2014,256:226-232. |
[1] | Dao-Yun Lan, Xiao-Feng Qu, Yu-Ting Tang, Li-Ying Liu, Jun Liu. Acetate Solutions with 3.9 V Electrochemical Stability Window as an Electrolyte for Low-Cost and High-Performance Aqueous Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2022, 28(1): 2102231-. |
[2] | Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang. Functional Sulfate Electrolytes Enable the Enhanced Cycling Stability of NaTi2(PO4)3/C Anode Material for Aqueous Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2021, 27(6): 605-613. |
[3] | Zhen-Lang Liang, Yao Yang, Hao Li, Li-Ying Liu, Zhi-Cong Shi. Lithium Storage Performance of Hard Carbons Anode Materials Prepared by Different Precursors [J]. Journal of Electrochemistry, 2021, 27(2): 177-184. |
[4] | Kai Wu. Syntheses of Na3V2(PO4)2O2F as a Cathode for Sodium Ion Battery Application [J]. Journal of Electrochemistry, 2021, 27(1): 56-62. |
[5] | CHEN Jia-hui, ZHONG Xiao-bin, HE Chao, WANG Xiao-xiao, XU Qing-chi, LI Jian-feng. Synthesis and Raman Study of Hollow Core-Shell Ni1.2Co0.8P@N-C as an Anode Material for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(3): 328-337. |
[6] | WANG Fan-fan, LIU Xiao-bin, CHEN Long, CHEN Cheng-cheng, LIU Yong-chang, FAN Li-zhen. Recent Progress in Key Materials for Room-Temperature Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 55-76. |
[7] | YAN Chong, KOU Hua-ri, YAN Bo, LIU Xiao-jing, LI De-jun, LI Xi-fei. Ni/Mn3O4/NiMn2O4 Double-Shelled Hollow Spheres Embedded into Reduced Graphene Oxide as Advanced Anodes for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 112-121. |
[8] | GAO Tian-yi, GONG Zheng-liang. Preparations and Electrochemical Performances of Carbon Coated Silicon/Graphite Composites [J]. Journal of Electrochemistry, 2018, 24(3): 253-261. |
[9] | WANG You, ZENG Yi-wen, ZHONG Xing, LIU Xing, TANG Quan. Synthesis and Electrochemical Properties of Li3V2(BO3)3/C Anode Materials for Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2018, 24(2): 174-181. |
[10] | LI Quan-yi, YANG Qi, ZHAO Yan-hong. Electrochemical Performance of MoO2-C Composite Coatings [J]. Journal of Electrochemistry, 2018, 24(2): 160-165. |
[11] | YUAN Shuang, ZHU Yun-hai, WANG Sai, SUN Tao, ZHANG Xin-bo, WANG Qiang. Micro/Nano-Structured Electrode Materials for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2016, 22(5): 464-476. |
[12] | YANG Ya-xiong, MA Rui-jun, GAO Ming-xia, PAN Hong-ge, LIU Yong-feng. Electrochemical Performance of Crystalline Li12Si7 as Anode Material for Lithium Ion Battery [J]. Journal of Electrochemistry, 2016, 22(5): 521-527. |
[13] | LIU Yong-chang, CHEN Cheng-cheng, ZHANG Ning, WANG Liu-bin, Xiang Xing-de, CHEN Jun. Research and Application of Key Materials for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2016, 22(5): 437-452. |
[14] | ZHANG Jing-fei, LU Jing, YANG Xiao-yu, HUANG Yun-di, XU Lin, SUN Dong-mei*, TANG Ya-wen. Synthesis of Porous Carbon Nanosheets and Its Application in Sodium-Ion Battery [J]. Journal of Electrochemistry, 2015, 21(6): 548-553. |
[15] | YANG Shan-shan, ZHANG Qian, LIN Xiong-gui, ZHENG Ming-sen, DONG Quan-feng*. Synthesis and Electrochemical Performance of Mn3O4/Graphene Composites [J]. Journal of Electrochemistry, 2015, 21(4): 326-331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||