Journal of Electrochemistry ›› 2021, Vol. 27 ›› Issue (1): 108-117. doi: 10.13208/j.electrochem.200409
• ARTICLE • Previous Articles Next Articles
Yun-Feng Zhang*(), Jia-Ming Dong, Chang Tan, Shi-kang Huo, Jia-ying Wang, Yang He, Ya-Ying Wang
Received:
2020-04-16
Revised:
2020-07-01
Online:
2021-02-28
Published:
2020-07-01
Contact:
Yun-Feng Zhang
E-mail:zhangyf329@gmail.com
Yun-Feng Zhang, Jia-Ming Dong, Chang Tan, Shi-kang Huo, Jia-ying Wang, Yang He, Ya-Ying Wang. Preparation and Performance Investigation of Li-SGO doped Semi-IPNs Porous Single Ion Conducting Polymer electrolyte[J]. Journal of Electrochemistry, 2021, 27(1): 108-117.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.200409
Figure 7
(A) Ionic conductivity and (B) Nyquist plots of po-FPAS and Li-SGO-po-FPAS; Galvanostatic charge-discharge curves of (C) po-FPAS and (D) Li-SGO-po-FPAS assembled cells; (E) Long-term cycle performances of po-FPAS and Li-SGO-po-FPAS assembled cells at different C-rates and room temperature. (color on line)
[1] | Hu J(胡静), Huang B B(黄碧斌), Jiang L P(蒋莉萍), Feng K H(冯凯辉), Li Q H(李琼慧), Xu Z(许钊). Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power (中国电力), 2020,53(1):100-107. |
[2] |
Lee K T, Jeong S, Cho J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries[J]. Accounts Chem. Res, 2012,46(5):1161-1170.
doi: 10.1021/ar200224h URL |
[3] |
Chen W, Lei T Y, Wu C Y, Deng M, Gong C H, Hu K, Ma Y C, Dai L P, Lü W Q, He W D, Liu X J, Xiong J, Yan C L. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Adv. Energy Mater., 2018,8(10):1702348.
doi: 10.1002/aenm.201702348 URL |
[4] |
Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Adv. Mater., 2017,29(44):1703548-n/a.
URL pmid: 29024072 |
[5] |
Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chem. Soc. Rev., 2017,46(3):797-815.
doi: 10.1039/c6cs00491a URL pmid: 28098280 |
[6] |
Zhang Y F, Pan M Z, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technol., 2018,6(2):289-295.
doi: 10.1002/ente.v6.2 URL |
[7] | Zhang J W, Wang S J, Han D M, Xiao M, Sun L Y, Meng Y Z. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance[J]. Energy Storage Mater., 2020,24:579-587. |
[8] |
Shin D M, Bachman J E, Taylor M K, Kamcev J, Park J G, Ziebel M E, Velasquez E, Jarenwattananon N N, Sethi G K, Long J R. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Adv. Mater., 2020,32(10):1905771.
doi: 10.1002/adma.v32.10 URL |
[9] |
Liu J C, Pickett P D, Park B, Upadhyay S P, Orski S V, Schaefer J L. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synjournal and ion transport characterization[J]. Polym. Chem., 2020,11(2):461-471.
doi: 10.1039/C9PY01035A URL |
[10] |
Deng K R, Zeng Q G, Wang D, Liu Z, Qiu Z P, Zhang Y F, Xiao M, Meng Y Z. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. J. Mater. Chem. A , 2020,8(4):1557-1577.
doi: 10.1039/C9TA11178F URL |
[11] |
Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Adv. Funct. Mater., 2020,30(4):1906444.
doi: 10.1002/adfm.v30.4 URL |
[12] |
Zhang Y F, Liu Y, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Fluorene-containing cardo and fully aromatic single ion conducting polymer electrolyte for room temperature, high performance lithium ion batteries[J]. ChemistrySelect, 2017,2(26):7904-7908.
doi: 10.1002/slct.201701006 URL |
[13] |
Zhang Y F, Cai W W, Rohan R, Pan M Z, Liu Y, Liu X P, Li C C, Sun Y B, Cheng H S. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte[J]. J. Power Sources, 2016,306:152-161.
doi: 10.1016/j.jpowsour.2015.12.010 URL |
[14] |
Zhang Y F, Lim C A, Cai W W, Rohan R, Xu G D, Sun Y B, Cheng H S. Design and synjournal of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries[J]. RSC Adv., 2014,4(83):43857-43864.
doi: 10.1039/C4RA08709G URL |
[15] |
Zhang Y F, Xu G D, Sun Y B, Han B, Teguh B W T, Chen Z X, Rohan R, Cheng H S. A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries[J]. RSC Adv., 2013,3(35):14934-14937.
doi: 10.1039/c3ra41167b URL |
[16] |
Li Z, Yao Q M, Zhang Q, Zhao Y Q, Gao D X, Li S S, Xu S M. Creating ionic channels in single-ion conducting solid polymer electrolyte by manipulating phase separation structure[J]. J. Mater. Chem. A, 2018,6(48):24848-24859.
doi: 10.1039/C8TA08967A URL |
[17] |
Rohan R, Sun Y B, Cai W W, Pareek K, Zhang Y F, Xu G D, Cheng H S. Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries[J]. J. Mater. Chem. A, 2014,2(9):2960-2967.
doi: 10.1039/C3TA13765A URL |
[18] | Wu P(吴鹏), Li Z L(李忠伦), Y Z(余智), Liu P B(刘鹏波). Preparation of porous polyimide film with low dielectric constant by nonsolvent induced phase separation[J]. Polym. Mater. Sci. Eng. (高分子材料科学与工程), 2018,34(3):132-137. |
[19] |
Wang J Y, He Y, Wu Q, Zhang Y F, Li Z Y, Liu Z H, Huo S K, Dong J M, Zeng D L, Cheng H S. A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application[J]. Sci. Rep., 2019,9:19320.
doi: 10.1038/s41598-019-55865-6 URL pmid: 31848415 |
[20] |
Dong J M, Zhang Y F, Wang J Y, Yang Z H, Sun Y B, Zeng D L, Liu Z H, Cheng H S. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. J. Membr. Sci. , 2018,568:22-29.
doi: 10.1016/j.memsci.2018.09.052 URL |
[21] | Zan L N(昝丽娜). Comprehensive experimental design of preparation of multiwalled carbon nanotubes/polyvinyl alcohol composite fiber by electrospining[J]. Chin. J. Chem. Edu. (化学教育(中英文)), 2020,41(2):76-80. |
[22] |
Zhang Y F, Rohan R, Cai W W, Xu G D, Sun Y B, Lin A, Cheng H S. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014,6(20):17534-17542.
URL pmid: 25225970 |
[23] |
Zhang Y F, Chen Y Z, Liu Y, Qin B S, Yang Z H, Sun Y B, Zeng D L, Varzi A, Passerini S, Liu Z H, Cheng H S. Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries[J]. J. Power Sources, 2018,397:79-86.
doi: 10.1016/j.jpowsour.2018.07.007 URL |
[24] |
Liu X P, Yang Z H, Zhang Y F, Li C C, Dong J M, Liu Y, Cheng H S. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application[J]. Int. J. Hydrog. Energy, 2017,42(15):10275-10284.
doi: 10.1016/j.ijhydene.2017.02.128 URL |
[25] | Yang J(杨娟), Lang J W(郎俊伟), Zhang P(张鹏), Liu B(刘宝). Preparations of nanostructural MnO-porous graphene hybrid material by thermally-driven etching of MnO for lithium-air batteries[J]. J. of Electrochem. (电化学), 2019,25(5):621-630. |
[26] | Hu X L(胡晓兰), Zhou C(周川), Dai S W(代少伟), Liu W J(刘文军), Li W D(李伟东), Zhou Y J(周玉敬), Qiu H(邱虹), Bai H(白华). Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy resin composites with different fiber surface properties[J]. Acta Mater. Compos. Sin. (复合材料学报), 2020: 37(5):1070-1080. |
[27] |
Zhang Y F, Ting J W Y, Rohan R, Cai W W, Li J, Xu G D, Chen Z X, Lin A, Cheng H S. Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide[J]. J. Mater. Sci. , 2014,49(9):3442-3450.
doi: 10.1007/s10853-014-8055-0 URL |
[28] |
Li C C, Zhang Y F, Liu X P, Dong J M, Wang J Y, Yang Z H, Cheng H S. Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells[J]. J. Mater. Sci., 2018,53(7):5501-5510.
doi: 10.1007/s10853-017-1945-1 URL |
[29] |
Liu Y, Zhang Y F, Pan M Z, Liu X P, Li C C, Sun Y B, Zeng D L, Cheng H S. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. J. Membr. Sci. , 2016,507:99-106.
doi: 10.1016/j.memsci.2016.02.002 URL |
[30] |
Zhai C X, Zhou H H, Gao T, Zhao L L, Lin S C. Electrostatically tuned microdomain morphology and phase-dependent ion transport anisotropy in single-ion conducting block copolyelectrolytes[J]. Macromolecules, 2018,51(12):4471-4483.
doi: 10.1021/acs.macromol.8b00451 URL |
[31] |
Nguyen H D, Kim G T, Shi J L, Paillard E, Judeinstein P, Lyonnard S, Bresser D, Iojoiu C. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries[J]. Energy Environ. Sci., 2018,11(11):3298-3309.
doi: 10.1039/C8EE02093K URL |
[32] |
Kamal A Z, Çelik S Ü, Bozkurt A. Single ion conducting blend polymer electrolytes based on LiPAAOB and PPEGMA[J]. J. Inorg. Organomet. Polym. Mater., 2018,28(4):1616-1623.
doi: 10.1007/s10904-018-0805-z URL |
[33] |
Zhang Y F, Rohan R, Sun Y B, Cai W W, Xu G D, Lin A, Cheng H S. A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability[J]. RSC Adv., 2014,4(40):21163-21170.
doi: 10.1039/C4RA02729A URL |
[34] |
Hu M F, Yuan Y, Liu Y J, Tian L Y, Zhang Y Y, Long D H. Progressively providing ionic inhibitor via functional nanofiber layer to stabilize lithium metal anode[J]. Electrochim. Acta, 2019,302:301-309.
doi: 10.1016/j.electacta.2019.02.045 URL |
[35] |
Deng K R, Qin J X, Wang S J, Ren S, Han D M, Xiao M, Meng Y Z. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte[J]. Small, 2018,14(31):1801420.
doi: 10.1002/smll.v14.31 URL |
[1] | Zhen-Wei Zhu, Jing-Yi Qiu, Li Wang, Gao-Ping Cao, Xiang-Ming He, Jing Wang, Hao Zhang. Application of Artificial Intelligence to Lithium-Ion Battery Research and Development [J]. Journal of Electrochemistry, 2022, 28(12): 2219003-. |
[2] | Lei Zhang, Xu-Ping Zhang, Si-Wei Zhang, Quan-Chao Zhuang. Influence of Resveratrol on Performance of Long-Term Storage’s Lithium-Ion Battery Electrolyte [J]. Journal of Electrochemistry, 2021, 27(1): 83-91. |
[3] | WANG Jia, HUANG Qiu-an, LI Wei-heng, WANG Juan, ZHUANG Quan-chao, ZHANG Jiu-jun. Fundamentals of Distribution of Relaxation Times for Electrochemical Impedance Spectroscopy [J]. Journal of Electrochemistry, 2020, 26(5): 607-627. |
[4] | ZENG Zi-qi, AI Xin-ping, YANG Han-xi, CAO Yu-liang. Research Progress of High-Safety Phosphorus-Based Electrolyte [J]. Journal of Electrochemistry, 2020, 26(5): 683-693. |
[5] | YANG Yu-sheng. A Review of Electrochemical Energy Storage Researches in the Past 22 Years [J]. Journal of Electrochemistry, 2020, 26(4): 443-463. |
[6] | WANG Dan-feng, LI Yi-xiao, WANG Wei-li, YANG Yong. Effects of Al-Doping on Properties of Ni-Rich Cathode Materials Employing Different Aluminum Sources [J]. Journal of Electrochemistry, 2019, 25(6): 660-668. |
[7] | SUN Meng-lei, ZHANG Da-qi, FENG Jin-kui, NI Jiang-feng. Recent Progress in Vanadium-Based Electrode Materials [J]. Journal of Electrochemistry, 2019, 25(1): 45-54. |
[8] | XIA Yong-kang, GU Ming-yuan, YANG Hong-guan, YU Xin-zhi, LU Bing-an. CVD Preparation and Application of 3D Graphene in Electrochemical Energy Storage [J]. Journal of Electrochemistry, 2019, 25(1): 89-103. |
[9] | GUAN Xiao-yun, HONG Chao-yu, ZHU Jian-ping, WANG Wei-li, LI Yi-xiao,YANG Yong. Synthesis and Electrochemical Properties of Nickel-Rich Cathode Material LiNi0.6Co0.2Mn0.2O2 with High Initial Coulombic Efficiency [J]. Journal of Electrochemistry, 2018, 24(1): 56-62. |
[10] | GUO Ze-liang, WU Hui. Research Progress in Cycle Stability of Silicon Based Li-Ion Battery Anodes [J]. Journal of Electrochemistry, 2016, 22(5): 499-512. |
[11] | HOU Meng-yan, BAO Hong-liang, WANG Ke, WANG Jian-qiang, XIA Yong-yao. Electrochemical and in situ X-ray Absorption Fine Structure Study of Li-Rich Cathode Materials [J]. Journal of Electrochemistry, 2016, 22(3): 288-298. |
[12] | YANG Shan-shan, ZHANG Qian, LIN Xiong-gui, ZHENG Ming-sen, DONG Quan-feng*. Synthesis and Electrochemical Performance of Mn3O4/Graphene Composites [J]. Journal of Electrochemistry, 2015, 21(4): 326-331. |
[13] | HU Jun-yan, WANG Meng-meng, LIU Hong-tao*. Preparation and Enhanced Rate Capability of Spinel LiMn1.9Al0.1O3.95F0.05 [J]. Journal of Electrochemistry, 2015, 21(4): 382-386. |
[14] | CAI Ji-jun, CUI Wang-jun*, LI Bing, YU Yang-yang, ZHAO Jin-bao*. Electrochemical Performance of CoAl2O4-Coated LiNi1/3Co1/3Mn1/3O2 [J]. Journal of Electrochemistry, 2015, 21(2): 145-151. |
[15] | ZHANG Yong-long, HU Xue-bu*, WANG Yao-qiong, HUANG Dong-hai. Syntheses and Electrochemical Performances of Li4Ti5O12 Anode Materials for Lithium Ion Battery [J]. Journal of Electrochemistry, 2015, 21(2): 181-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||