Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (2): 175-189. doi: 10.13208/j.electrochem.191148
• Special Issue:High Temperature Electrochemistry (Guest Editor: Professor Jiang Liu, South China University of Technology) • Previous Articles Next Articles
Received:
2020-01-28
Revised:
2020-03-12
Online:
2020-04-28
Published:
2020-03-13
Contact:
LIU Jiang
E-mail:jiangliu@scut.edu.cn
CLC Number:
LIU Jiang, YAN Xiao-min. Direct Carbon Solid Oxide Fuel Cells[J]. Journal of Electrochemistry, 2020, 26(2): 175-189.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.191148
[1] | Birol F . World Energy Outlook 2018. IEA (International Energy Agency)[EB/OL]. Paris, 2018. . |
[2] | Chen S( 陈硕), Chen T( 陈婷 ). Air pollution and public health: Evidence from sulfur dioxide emission of coal-fired power station in China[J]. Economic Research Journal( 经济研究), 2014,49(8):158-169. |
[3] | Zou C N( 邹才能), Zhao Q( 赵群), Zhang G S( 张国生 ), et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry( 天然气工业), 2016,36(1):1-10. |
[4] | Dicks A L . The role of carbon in fuel cells[J]. Journal of Power Sources, 2006,156(2):128-141. |
[5] | Carlson E J . Program on technology innovation: systems assessment of direct carbon fuel cells technology. EPRI report[R]. Palo Alto: EPRI 2006. CA 1013362. |
[6] | Cao D X, Sun Y, Wang G L . Direct carbon fuel cell: fundamentals and recent developments[J]. Journal of Power Sources, 2007,167(2):250-257. |
[7] | Rady A C, Giddey S, Badwal S P S , et al. Review of fuels for direct carbon fuel cells[J]. Energy & Fuels, 2012,26(3):1471-1488. |
[8] | Giddey S, Badwal S P S, Kulkarni A , et al. A comprehensive review of direct carbon fuel cell technology[J]. Progress in Energy and Combustion Science, 2012,38(3):360-399. |
[9] | Gür T M . Critical review of carbon conversion in “carbon fuel cells”[J]. Chemical Reviews, 2013,113(8):6179-6206. |
[10] | Cao T Y, Huang K, Shi Y X . Recent advances in high-temperature carbon-air fuel cells[J]. Energy & Environmental Science, 2017,10(2):460-490. |
[11] | Zhong Y J, Su C, Cai R , et al. Process investigation of a solid carbon-fueled solid oxide fuel cell integrated with a CO2 permeating membrane and a sintering-resistant reverse Boudouard reaction catalyst[J]. Energy & Fuels, 2016,30(3):1841-1848. |
[12] | Kacprzak A, Kobylecki R, Bis Z . Influence of temperature and composition of NaOH-KOH and NaOH-LiOH electrolytes on the performance of a direct carbon fuel cell[J]. Journal of Power Sources, 2013,239:409-414. |
[13] | Guo L, Calo J M, Kearney C , et al. The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell[J]. Applied Energy, 2014,129:32-38. |
[14] | Zecevic S, Patton E M, Parhami P . Carbon-air fuel cell without a reforming process[J]. Carbon, 2004,42(10):1983-1993. |
[15] | Cooper J F, Selman R . Electrochemical oxidation of carbon for electric power generation: a review[J]. ECS Tran-sactions, 2009,19(14):15-25. |
[16] | Jia L J, Tian Y, Liu Q H , et al. A direct carbon fuel cell with(molten carbonate)/(doped ceria) composite electrolyte[J]. Journal of Power Sources, 2010,195(17):5581-5586. |
[17] | Elleuch A, Yu J S, Boussetta A , et al. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. International Journal of Hydrogen Energy, 2013,38(20):8514-8523. |
[18] | Liu J, Zhou M Y, Zhang Y P , et al. Electrochemical oxidation of carbon at high temperature: principles and applications[J]. Energy & Fuels, 2018,32(4):4107-4117. |
[19] | Nabae Y, Pointon K D, Irvine J T S . Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte[J]. Energy & Environmental Science, 2008,1(1):148-155. |
[20] | Jayakumar A, Küngas R, Roy S , et al. A direct carbon fuel cell with a molten antimony anode[J]. Energy & Environmental Science, 2011,4(10):4133-4137. |
[21] | Xu X Y, Zhou W, Liang F L , et al. A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell[J]. Applied Energy, 2013,108:402-409. |
[22] | Hao W B, He X J, Mi Y L . Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source[J]. Applied Energy, 2014,135:174-181. |
[23] | Elleuch A, Halouani K, Li Y D . Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel[J]. Journal of Power Sources, 2015,281:350-361. |
[24] | Yu J S, Zhao Y C, Li Y D . Utilization of corn cob biochar in a direct carbon fuel cell[J]. Journal of Power Sources, 2014,270:312-317. |
[25] | Jain S L, Lakeman J B, Pointon K D , et al. Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF[J]. Energy & Environmental Science, 2009,2(6):687-693. |
[26] | Jiang C R, Ma J J, Bonaccorso A D , et al. Demonstration of high power, direct conversion of waste-derived carbon in a hybrid direct carbon fuel cell[J]. Energy & Environmental Science, 2012,5(5):6973-6980. |
[27] | Ahn S Y, Eom S Y, Rhie Y H , et al. Utilization of wood biomass char in a direct carbon fuel cell(DCFC) system[J]. Applied Energy, 2013,105:207-216. |
[28] | Li S W, Lee A C, Mitchell R E , et al. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008,179(27/32):1549-1552. |
[29] | Wu Y Z, Su C, Zhang C M , et al. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochemistry Communications, 2009,11(6):1265-1268. |
[30] | Nakagawa N, Ishida M . Performance of an internal direct oxidation carbon fuel cell and its evaluation by graphic exergy analysis[J]. Industrial & Engineering Chemistry Research. 1988,27(7):1181-1185. |
[31] | Tang Y B, Liu J . Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010,35(20):11188-11193. |
[32] | Xie Y M, Tang Y B, Liu J . A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2013,17(1):121-127. |
[33] | Cai W Z, Liu J, Xie Y M , et al. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2016,20(8):2207-2216. |
[34] |
Xu H R, Chen B, Liu J , et al. Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration[J]. Applied Energy, 2016,178:353-362.
doi: 10.1016/j.apenergy.2016.06.064 URL |
[35] |
Gür T M, Huggins R A . Direct electrochemical conversion of carbon to electrical energy in a high temperature fuel cell[J]. Journal of The Electrochemistry Society, 1992,139(10):L95-L97.
doi: 10.1149/1.2069025 URL |
[36] | Tang Y B, Liu J, Sui J . A novel direct carbon solid oxide fuel cell[J]. ECS Transactions, 2009,25(2):1109-1114. |
[37] | Tang Y B, Liu J . Fueling solid oxide fuel cells with activated carbon[J]. Acta Physico - Chimica Sinica, 2010,26(5):1191-1194. |
[38] | Liu J( 刘江), Tang Y B( 唐玉宝), Sui J( 隋静 ). A direct carbon solid oxide fuel cell: Chinese Patent, ZL200910192848.8[P]. December 28, 2011. |
[39] | Cai W Z, Liu J, Yu F Y , et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon[J]. International Journal of Hydrogen Energy, 2017,42(33):21167-21176. |
[40] | Xie Y M, Tang Y B, Liu J . An Al2O3-doped YSZ electrolyte-supporting solid oxide fuel cells fabricated by dip-coating and its direct operation on carbon fuel[J]. ECS Transactions, 2013,57(1):3039-3048. |
[41] | Zhang L, Xiao J, Xie Y M , et al. Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2014,608:272-277. |
[42] | Bai Y H, Liu Y, Tang Y B , et al. Direct carbon solid oxide fuel cell - a potential high performance battery[J]. International Journal of Hydrogen Energy, 2011,36(15):9189-9194. |
[43] | Yu F Y, Zhang Y P, Yu L , et al. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes[J]. International Journal of Hydrogen Energy, 2016,41(21):9048-9058. |
[44] | Xiao J, Han D, Yu F Y , et al. Characterization of symmetrical SrFe0.75Mo0.25O3-δ electrodes in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2016,688:939-945. |
[45] | Liu J( 刘江 ). Cone-shaped anode-supported solid oxide fuel cell/stack: Chinese Patent, ZL200510101483.3[P]. November 7, 2007. |
[46] | Timurkutluk B, Timurkutluk C, Mat M D , et al. A review on cell/stack designs for high performance solid oxide fuel cells[J]. Renewable and Sustainable Energy Reviews, 2016,56:1101-1121. |
[47] | Sui J, Liu J . An electrolyte-supported SOFC stack fabricated by slip casting technique[J]. ECS Transactions, 2007,7(1):633-637. |
[48] | Sui J, Liu J . Slip-cast Ce0.8Sm0.2O1.9 cone-shaped SOFC[J]. Journal of the American Ceramic Society, 2008,91(4):1335-1337. |
[49] | Zhang Y H, Liu J, Yin J , et al. Fabrication and performance of cone-shaped segmented-in-series solid oxide fuel cells[J]. International Journal of Applied Ceramic Technology, 2008,5(6):568-573. |
[50] | Bai Y H, Liu J, Gao H B , et al. Dip-coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2009,480(2):554-557. |
[51] | Bai Y H, Liu J, Wang C L . Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip-coating technique[J]. International Journal of Hydrogen Energy, 2009,34(17):7311-7315. |
[52] | Ding J, Liu J . A novel design and performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack[J]. Journal of Power Sources, 2009,193(2):769-773. |
[53] | Xiao J, Liu J, Ding J . Electrochemical performance of cone-shaped tubular anode supported solid oxide fuel cells fabricated by low-pressure injection moulding technique[J]. ECS Transactions, 2011,35(1):609-614. |
[54] | Wang H D, Liu J . Effect of anode structure on performance of cone-shaped solid oxide fuel cells fabricated by phase inversion[J]. International Journal of Hydrogen Energy, 2012,37(5):4339-4345. |
[55] | Liu Y, Tang Y B, Ding J , et al. Electrochemical performance of cone-shaped anode-supported segmented-in-series SOFCs fabricated by gel-casting technique[J]. International Journal of Hydrogen Energy, 2012,37(1):921-925. |
[56] | Bai Y H, Wang C L, Ding J , et al. Direct operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell stack with methane[J]. Journal of Power Sources, 2010,195(12):3882-3886. |
[57] | Liu Y, Bai Y H, Liu J . Carbon monoxide fueled cone-shaped tubular solid oxide fuel cell with(Ni0.75Fe0.25-5%MgO)/YSZ anode(vol 160, F13, 2013)[J]. Journal of The Electrochemical Society, 2013,160(4):X5-X5. |
[58] | Wang X Q( 王晓强), Liu J( 刘江), Xie Y M( 谢永敏 ), et al. A high performance direct carbon solid oxide fuel cell stack for portable applications[J]. Acta Physico - Chimica Sinica( 物理化学学报), 2017,33(8):1614-1620. |
[59] | Liu J( 刘江), Zhang L( 张莉), Liu Y( 刘燕 ), et al. A solid oxide fuel cell stack based on a single piece of electrolyte plate: Chinese Patent, ZL201420173772.0[P]. October 8, 2014. |
[60] | Wang W, Liu Z J, Zhang Y P , et al. A direct carbon solid oxide fuel cell stack on a single electrolyte plate fabricated by tape casting technique[J]. Journal of Alloys and Compounds, 2019,794:294-302. |
[61] | Cai W Z, Zhou Q, Xie Y M , et al. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Applied Energy, 2016,179:1232-1241. |
[62] | Risnes H, Fjellerup J, Henriksen U , et al. Calcium addition in straw gasification[J]. Fuel, 2003,82(6):641-651. |
[63] | Quyn D M, Hayashi J, Li C Z . Volatilisation of alkali and alkaline earth metallic species during the gasification of a victorian brown coal in CO2[J]. Fuel Processing Techno-logy, 2005,86(12/13):1241-1251. |
[64] | Zhou Q, Cai W Z, Zhang Y P , et al. Electricity generation from corn cob char through a direct carbon solid oxide fuel cell[J]. Biomass and Bioenergy, 2016,91:250-258. |
[65] | Cai W Z, Liu J, Liu P P , et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw, International Journal of Energy Research, 2019,43(7):2468-2477. |
[66] | Qiu Q Y, Zhou M Y, Cai W Z , et al. A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse[J]. Biomass and Bioenergy, 2019,121:56-63. |
[67] | Qiu Q Y( 丘倩媛), Chen Q Y( 陈倩阳), Liu Z J( 刘志军 ), et al. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology( 燃料化学学报), 2019,47(3):352-360. |
[68] | Xie Y M( 谢永敏), Li J L( 李江霖), Hou J X( 侯金醒 ), et al. Direct use of coke in a solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology( 燃料化学学报), 2018,46(10):1168-1174. |
[69] | Wu H, Xiao J, Zeng X Y , et al. A high performance direct carbon solid oxide fuel cell — a green pathway for brown coal utilization[J]. Applied Energy, 2019,248:679-687. |
[70] | Xie Y M, Xiao J, Liu D D , et al. Electrolysis of carbon dioxide in a solid oxide electrolyzer with silver-gadolinium-doped ceria cathode[J]. Journal of The Electrochemical Society, 2015,162(4):F397-F402. |
[1] | Fang Ying, Shan-Shan Xu, Yan-Bing Xu, Miao-Miao Liang, Jian-Feng Li. Electrochemical Degradation of Oxytetracycline Catalyzed by Fe3O4 Magnetic Nanoparticles [J]. Journal of Electrochemistry, 2022, 28(4): 2107141-. |
[2] | HAN Ping, FENG Hai-tao, DONG Ya-ping, TIAN Sen, ZHANG Bo, LI Wu. Electrochemical Oxidation of Metal Chromium in odium Hydroxide Aqueous Solution [J]. Journal of Electrochemistry, 2020, 26(3): 413-421. |
[3] | SUN Chong-yun,LI Zhong-fang,LU Xue-wei,ZHONG Xi-zhan,LIU Yu-rong. Preparation and Performance of 3D Graphene Type Porous Carbon Employing Nano Fe(OH)3 as Template for Oxygen Reduction Catalyst [J]. Journal of Electrochemistry, 2016, 22(2): 157-163. |
[4] | CAI Ji-jun, CUI Wang-jun*, LI Bing, YU Yang-yang, ZHAO Jin-bao*. Electrochemical Performance of CoAl2O4-Coated LiNi1/3Co1/3Mn1/3O2 [J]. Journal of Electrochemistry, 2015, 21(2): 145-151. |
[5] | LI Xue, XUE Meng, HUANG Ling*, LI Jun-tao, SUN Shi-gang. Preparation and Properties of Titanium based Metal Oxide Electrodes for Ammonia Nitrogen Wastewater Treatment [J]. Journal of Electrochemistry, 2015, 21(1): 78-84. |
[6] | LU Yong-hong, DONG Xiao-bo, WANG Li-sha, LIU Yan, ZHU Chen-jian, XU Hai-bo*. Electrochemical Oxidation of Ammonium Nitrite in Absorption Solution of Flue Gas [J]. Journal of Electrochemistry, 2014, 20(1): 39-44. |
[7] | LIU Han-shui, YU su, TONG Shao-ping*, MA Chun-an. A Comparative Study in Pretreatments of Acid Chemical Wastewater by Electrochemical Oxidation and Ozonation [J]. Journal of Electrochemistry, 2013, 19(5): 472-476. |
[8] | NIU Dong-fang, YU Cheng-kai, ZHANG Xin-sheng*. Preparation of Benzoquinone from Phenol by Electrooxidation [J]. Journal of Electrochemistry, 2013, 19(5): 477-481. |
[9] | SU Jing, LIN Hai-bo*, XU Hong, HUANG Wei-min, HE Ya-peng. Electrocatalytic Oxidation Degradation Kinetics of Oxalic Acid in a Cylindrical Electrochemical Reactor with Ti/IrO2-Ta2O5 Anode [J]. Journal of Electrochemistry, 2013, 19(4): 293-299. |
[10] | Min Tian, Daniel Liba, Aicheng Chen*. Kinetic Study of Photoelectrochemical Oxidation of Lignin Model Compounds on TiO2 Nanotubes [J]. Journal of Electrochemistry, 2012, 18(5、6): 537-547. |
[11] | YAO Yu, YU Ai-Shui. Influences of Particle Size and Sulfuric Acid Treatment on the Electrochemical Performance of Bamboo Charcoal [J]. Journal of Electrochemistry, 2012, 18(4): 314-317. |
[12] | WANG Gui-Ling1,2*,LIU Jin-Cheng2,SUN Ke-Ning1,CAO Dian-Xue2. Electrocatalytic Activities of Au-MmNi_(3.2)Al_(0.2)Mn_(0.6)Co_(1.00) for Borohydride Oxidation [J]. Journal of Electrochemistry, 2009, 15(4): 450-453. |
[13] | XU Juan, HUANG Gui-ping, LI Hong, ZHU Wei. Electrochemical Oxidization of Herring Sperm DNA and its Interaction with Histone [J]. Journal of Electrochemistry, 2007, 13(4): 372-376. |
[14] | LIN Juan,ZHAO Wei. Electrochemical Reduction of Coals and the Oxygenic Functional Simulacrums of Coals [J]. Journal of Electrochemistry, 2007, 13(2): 177-182. |
[15] | LIU Yong1,2,LIU Dan2*,ZHAO Shi-lin1,LAI Jing-jing1. Electrochemical Oxidation of the Phenol in the Chloride System [J]. Journal of Electrochemistry, 2007, 13(1): 30-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||