Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (2): 243-252. doi: 10.13208/j.electrochem.191145
Special Issue: “电催化和燃料电池”专题文章
• Special Issue:High Temperature Electrochemistry (Guest Editor: Professor Jiang Liu, South China University of Technology) • Previous Articles Next Articles
FAN Yun, WANG Qi, LI Jun, LUO Jing-li, FU Xian-zhu*()
Received:
2019-11-19
Revised:
2020-02-08
Online:
2020-04-28
Published:
2020-03-29
Contact:
FU Xian-zhu
E-mail:xz.fu@szu.edu.cn
CLC Number:
FAN Yun, WANG Qi, LI Jun, LUO Jing-li, FU Xian-zhu. Research Progress in Ethane Dehydrogenation to Cogenerate Power and Value-Added Chemicals in Solid Oxide Fuel Cells[J]. Journal of Electrochemistry, 2020, 26(2): 243-252.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.191145
[1] | Lü Y( 吕尧), Huang B( 黄波), Gu X Z( 顾习之 ), et al. Fabrication and characterization of the Ni-ScSZ composite anodes with a Cu-LSCM-CeO2 catalyst layer in the thin film SOFC[J]. Journal of Electrochemistry( 电化学), 2014,20(5):470-475. |
[2] | Vayenas C G, Farr R D . Cogeneration of electric energy and nitric oxide[J]. Science, 1980,208(4444):593-594. |
[3] |
Shao Z P, Zhang C M, Wang W , et al. Electric power and synjournal gas co-generation from methane with zero waste gas emission[J]. Angewandte Chemie International Edition, 2012,50(8):1792-1797.
doi: 10.1002/anie.v50.8 URL |
[4] | Torabi A, Barton J, Willman C , et al. Developing low-intermediate temperature fuel cells for direct conversion of methane to methanol fuel[J]. ECS Transactions, 2016,72(7):193-199. |
[5] |
Hugill J A, Tillemans F W A, Dijkstra J W , et al. Feasibility study on the co-generation of ethylene and electricity through oxidative coupling of methane[J]. Applied Thermal Engineering, 2015,25(8):1259-1271.
doi: 10.1016/j.applthermaleng.2004.09.007 URL |
[6] |
Morejudo S H, Zanon R, Escolastico S , et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J]. Science, 2016,353(6299):563-566.
doi: 10.1126/science.aag0274 URL |
[7] |
Fu X Z, Luo J L, Sanger A R , et al. An integral proton conducting SOFC for simultaneous production of ethylene and power from ethane[J]. Chemical Communications, 2010,46(12):2052-2054.
doi: 10.1039/b926928b URL |
[8] |
Feng Y, Luo J L, Chuang K T . Conversion of propane to propylene in a proton-conducting solid oxide fuel cell[J]. Fuel, 2007,86(1/2):123-128.
doi: 10.1016/j.fuel.2006.06.012 URL |
[9] | Zhang J P( 张金萍 ). The preparation and study of co-generation of electricity and ethylene solid oxide fuel cells[D]. Harbin Institute of Technology( 哈尔滨工业大学), 2017. |
[10] |
Gao Y F, Neal L, Ding D , et al. Recent advances in intensified ethylene production - A Review[J]. ACS Catalysis, 2019,9(9):8592-8621.
doi: 10.1021/acscatal.9b02922 URL |
[11] | Liu S B, Chuang K T, Luo J L . Double-layered perovskite anode with in situ exsolution of a Co-Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell[J]. ACS Catalysis, 2016,6(2):760-768. |
[12] | Jiang S P( 蒋三平 ). Advances and challenges of intermediate temperature solid oxide fuel cells: A concise review[J]. Journal of Electrochemistry( 电化学), 2012,18(6):479-495. |
[13] | Fu X Z, Lin J Y, Xu S , et al. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode[J]. Physical Chemistry Chemical Physics, 2011,13(43):19615-19623. |
[14] |
Zhu B, Albinsson I, Andersson C , et al. Electrolysis studies based on ceria-based composites[J]. Electrochemistry Communications, 2006,8(3):495-498.
doi: 10.1016/j.elecom.2006.01.011 URL |
[15] | Singhal S . High-temperature solid oxide fuel cells: fundamentals, design and applications[J]. Materials Today, 2002,5(12):55. |
[16] | Shi Z, Luo J L, Wang S , et al. Protonic membrane for fuel cell for co-generation of power and ethylene[J]. Journal of Power Sources, 2008,176(1):122-127. |
[17] | Fu X Z, Luo J L, Sanger A R , et al. Y-doped BaCeO3-δ nanopowders as proton-conducting electrolyte materials for ethane fuel cells to co-generate ethylene and electricity[J]. Journal of Power Sources, 2010,195(9):2659-2663. |
[18] | Wang S, Luo J L, Sanger A R , et al. Performance of ethane/oxygen fuel cells using yttrium-doped barium cerate as electrolyte at intermediate temperatures[J]. Journal of Physical Chemistry C, 2007,111(13):5069-5074. |
[19] | Shao L, Si F, Fu X Z , et al. Stable SrCo0.7Fe0.2Zr0.1O3-δ cathode material for proton conducting solid oxide fuel cell reactors[J]. International Journal of Hydrogen Energy, 2018,43(15):7511-7514. |
[20] | Lin J Y, Shao L, Si F Z , et al. Multiple-doped barium cerate proton-conducting electrolytes for chemical-energy cogeneration in solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2018,43(42):17904-17910. |
[21] |
Fu X Z, Luo J L, Sanger A R , et al. Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors[J]. Electrochimica Acta, 2010,55(3):1145-1149.
doi: 10.1016/j.electacta.2009.10.010 URL |
[22] | Han M F( 韩敏芳), Peng S P( 彭苏萍 ). Solid oxide fuel cell material and preparation[M]. Beijing: Science Press( 科学出版社), 2004. |
[23] |
Sun C, Stimming U . Recent anode advances in solid oxide fuel cells[J]. Journal of Power Sources, 2007,171(2):247-260.
doi: 10.1016/j.jpowsour.2007.06.086 URL |
[24] | Gao F, Zhao H L, Li X , et al. Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency[J]. Journal of Power Sources, 2008,185(1):26-31. |
[25] | Huang X L( 黄贤良), Zhao H L( 赵海雷), Wu W J( 吴卫江 ), et al. Research progress on anode materials of solid oxide fuel cells[J]. Journal of the Chinese Ceramic Society( 硅酸盐学报), 2005,33(11):1407-1413. |
[26] | Murray E P, Tsai T, Barnett S A . A direct-methane fuel cell with a ceria-based anode[J]. Nature, 2016,400(6745):649-651. |
[27] | Tsipis E V, Kharton V V, Frade J R . Mixed conducting components of solid oxide fuel cell anodes[J]. Journal of the European Ceramic Society, 2005,25(12):2623-2626. |
[28] | Fu X Z, Luo X X, Luo J L , et al. Ethane dehydrogenation over nano-Cr2O3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity[J]. Journal of Power Sources, 2011,196(3):1036-1041. |
[29] |
Mackenzie J D, Bescher E P . Chemical routes in the synjournal of nanomaterials using the sol-gel process[J]. Accounts of Chemical Research, 2007,40(9):810-818.
doi: 10.1021/ar7000149 URL |
[30] | Chuang K T, Luo J L, Zhou G H , et al. FeCr2O4 nanoparticles as anode catalyst for ethane proton conducting fuel cell reactors to coproduce ethylene and electricity[J]. Advances in Physical Chemistry, 2011,2011(22):680-694. |
[31] | Lin J Y, Shao L, Si F Z , et al. Co2CrO4 nanopowders as an anode catalyst for simultaneous conversion of ethane to ethylene and power in proton-conducting fuel cell reactors[J]. The Journal of Physical Chemistry C, 2018,122(8):4165-4171. |
[32] | Li J H, Fu X Z, Luo J L , et al. Evaluation of molybdenum carbide as anode catalyst for proton-conducting hydrogen and ethane solid oxide fuel cells[J]. Electrochemistry Communications, 2012,15(1):81-84. |
[33] |
Cui S H, Li J H, Luo J L , et al. Co-generation of energy and ethylene in hydrocarbon fueled SOFCs with Cr3C2 and WC anode catalysts[J]. Ceramics International, 2014,40(8):11781-11786.
doi: 10.1016/j.ceramint.2014.04.007 URL |
[34] | Liu S B, Liu Q X, Fu X Z , et al. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles[J]. Applied Catalysis B: Environmental, 2017,220:283-289. |
[35] | Yang C H, Li J, Lin Y , et al. In situ fabrication of Co Fe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015,11:704-710. |
[36] | Liu S, Behnamian Y, Chuang K T , et al. A-site deficient La0.2Sr0.7TiO3-δ anode material for proton conducting ethane fuel cell to cogenerate ethylene and electricity[J]. Journal of Power Sources, 2015,298:23-29. |
[37] | Dogu D, Meyer K E, Fuller A , et al. Effect of lanthanum and chlorine doping on strontium titanates for the electrocatalytically-assisted oxidative dehydrogenation of ethane[J]. Applied Catalysis B: Environmental, 2018,227:90-101. |
[38] | Mai A, Becker M, Assenmacher W , et al. Time-dependent performance of mixed-conducting SOFC cathodes[J]. Solid State Ionics, 2006,177(19/25):1965-1968. |
[39] | Simner S P, Anderson M D, Coleman J E , et al. Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode[J]. Journal of Power Sources, 2006,161(1):115-122. |
[40] | Kim J D, Kim G D, Moon J W , et al. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy[J]. Solid State Ionics, 2001,143(3/4):379-389. |
[41] | Mitterdorfer A, Gauckler L J . Reaction kinetics of the Pt, O2(g)|c-ZrO2 system: precursor-mediated adsorption[J]. Solid State Ionics, 1999,120(1):211-225. |
[42] | Ostergard M J L, Mogensen M . AC Impedance study of the oxygen reduction mechanism on La1-xSrxMnO3 in solid oxide fuel cells[J]. Electrochimica Acta, 1993,38(14):2015-2020. |
[43] |
Horita T, Yamaji K, Sakai N , et al. Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique[J]. Journal of Power Sources, 2002,106(1/2):224-230.
doi: 10.1016/S0378-7753(01)01017-5 URL |
[44] | Shao L, Si F, Fu X Z , et al. Stable SrCo0.7Fe0.2Zr0.1O3-δ, cathode material for proton conducting solid oxide fuel cell reactors[J]. International Journal of Hydrogen Energy, 2018,43:7511-7514. |
[45] | Zhou Y B, An B M, Guo Y M , et al. Development of high performance cathodes for IT-SOFCs through beneficial interfacial reactions[J]. Electrochemistry Communications, 2009,11(11):2216-2219. |
[1] | Hao Wang, Xiao-Zhou Cao, Xiang-Xin Xue. Study on Electrodeposition of Antimony in Choline Chloride-Ethylene Glycol Eutectic Solvent [J]. Journal of Electrochemistry, 2022, 28(4): 2103071-. |
[2] | Sheng-Nan Sun, Zhi-Chuan Xu. Mass Loading Optimization for Ethylene Glycol Oxidation at Different Potential Regions [J]. Journal of Electrochemistry, 2022, 28(2): 2108411-. |
[3] | Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin. Effect of Aluminum Alloy Surface Modification on Adhesion of the Modified Polyurethane Coating and Its Corrosion Protective Performance [J]. Journal of Electrochemistry, 2021, 27(6): 624-636. |
[4] | Cong-Yi Zhu, Xiao-Hui Li, Quan-Quan Gan. Effect of Glycol Based Coolant Pollution on PEM Fuel Cells Stack and Recovery Measures [J]. Journal of Electrochemistry, 2021, 27(6): 698-704. |
[5] | Li Zhou, Lie Wu, Zhao-Ming Xue. Preparation and Characterization of Thermoplastic Polyurethane-Based Polymer Electrolyte [J]. Journal of Electrochemistry, 2021, 27(4): 439-448. |
[6] | YU Cheng-rong, ZHU Jian-guo, JIANG Cong-ying, GU Yu-chen, ZHOU Ye-xin, LI Zhuo-bin, WU Rong-min, ZHONG Zheng, GUAN Wan-bing. Numerical Simulations of Current and Temperature Distribution of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based on the Theory of Electric-Chemical-Thermal Coupling [J]. Journal of Electrochemistry, 2020, 26(6): 789-796. |
[7] | LI Xue, GONG Zheng-liang. Poly(ethylene oxide) Based Polymer Electrolytes for All-Solid-State Li-S Batteries [J]. Journal of Electrochemistry, 2020, 26(3): 338-346. |
[8] | Lü Zhe, WEI Bo, WANG Zhi-hong, TIAN Yan-ting. Materials, Micro-Stacks and Related Applications of Single-Chamber Solid Oxide Fuel Cells [J]. Journal of Electrochemistry, 2020, 26(2): 230-242. |
[9] | WEI Tong, LI Jian, JIA Li-chao, CHI Bo, PU Jian. Perovskite Catalysts for Fuel Reforming in SOFC:A Review and Perspective [J]. Journal of Electrochemistry, 2020, 26(2): 198-211. |
[10] | LIU Jiang, YAN Xiao-min. Direct Carbon Solid Oxide Fuel Cells [J]. Journal of Electrochemistry, 2020, 26(2): 175-189. |
[11] | HENG Zhi-lin, YUAN Xiao-zi, YIN Yi-mei,MA Zi-feng. Fuel Cells Reactor for Chemicals and Electric Energy Cogeneration [J]. Journal of Electrochemistry, 2018, 24(6): 615-627. |
[12] | WANG Zhi-gang, ZHAO Wei-min, WANG Hong-chun, LIN Min, GONG Zheng-liang, YANG Yong. Influences of FEC-based Electrolyte on Electrochemical Performance of High Voltage Cathode Material Li2CoPO4F [J]. Journal of Electrochemistry, 2018, 24(3): 216-226. |
[13] | WANG Yan-feng, LUO Di, SHAN Duo-liang, LU Xiao-quan*. Cathodic Electrochemiluminescence of Meso-tetra(4-sulfophenyl)porphyrin/Potassium Peroxydisulfate System [J]. Journal of Electrochemistry, 2017, 23(3): 307-315. |
[14] | Hisham Hamzah,Guy Denuault,Philip Bartlett,Aleksandra Pinczewska,Jeremy Kilburn. Electrografting of Mono-N-Boc-Ethylenediamine from an Acetonitrile/Aqueous NaHCO3 Mixture [J]. Journal of Electrochemistry, 2017, 23(2): 130-140. |
[15] | JI Wei-xiao, WANG Feng, QIAN Jiang-feng, CAO Yu-liang, AI Xin-ping, YANG Han-xi. 3, 4-Ethylenedioxythiophene Monomer as Safety-Enhancing Additive for Lithium Ion Batteries [J]. Journal of Electrochemistry, 2016, 22(3): 271-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||