Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (6): 876-884. doi: 10.13208/j.electrochem.190714
• Articles • Previous Articles Next Articles
LOU Jing-yuan, YOU Dong-jiang*(), LI Xue-jing
Received:
2019-07-14
Revised:
2019-10-05
Online:
2020-12-28
Published:
2020-02-12
Contact:
YOU Dong-jiang
E-mail:youdj@ytu.edu.cn
CLC Number:
LOU Jing-yuan, YOU Dong-jiang, LI Xue-jing. Step-by-Step Modification of Graphite Felt Electrode for Vanadium Redox Flow Battery[J]. Journal of Electrochemistry, 2020, 26(6): 876-884.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.190714
Tab. 2
The processing result based on cyclic voltammograms
Sample | Ipa /(mA·cm-2) | Ipc /(mA·cm-2) | Epa /V | Epc /V | Ipa /Ipc |
---|---|---|---|---|---|
N | 12.06 | 5.02 | 0.94 | 0.86 | 2.40 |
A1 | 36.60 | 24.50 | 0.94 | 0.88 | 1.49 |
A2 | 21.20 | 12.90 | 0.93 | 0.89 | 1.64 |
A3 | 17.96 | 7.48 | 0.93 | 0.87 | 2.39 |
B1 | 39.70 | 28.50 | 0.93 | 0.87 | 1.39 |
B2 | 36.15 | 25.78 | 0.92 | 0.82 | 1.40 |
B3 | 20.5 | 13.8 | 0.94 | 0.86 | 1.49 |
Tab. 3
Fitting parameters obtained from the impedance results of graphite felt with different treatment conditions
Sample | Rs/(Ω·cm2) | R1/(Ω·cm2) | R2/(Ω·cm2) |
---|---|---|---|
N | 0.40 | 21.06 | 299.60 |
A1 | 0.32 | 10.64 | 255.90 |
A2 | 0.32 | 9.41 | 273.30 |
A3 | 0.33 | 11.41 | 266.50 |
B1 | 0.38 | 7.33 | 198.30 |
B2 | 0.34 | 10.64 | 203.30 |
B3 | 0.38 | 10.95 | 253.10 |
[1] | Guarnieri M, Mattavelli P, Petrone G , et al. Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology[J]. IEEE Industrial Electronics Magazine, 2016,10(4):20-31. |
[2] | Perry M L . Expanding the chemical space for redox flow batteries[J]. Science, 2015,349(6255):1452-1452. |
[3] | Zeng Y( 曾艳), Lv Z S( 吕早生), Liu Y C( 刘俞辰 ), et al. Recent progress on graphite felt as electrode materials in vanadium redox flow battery[J]. Plating & Finishing( 电镀与精饰), 2019,41(1):15-21. |
[4] | Kim K J, Park M S, Kim Y J , et al. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. Journal of Materials Chemistry, 2015,3(33):16913-16933. |
[5] | Li B, Gu M, Nie Z M , et al. Bismuth nanoparticle decorating graphite felt as a high performance electrode for an all vanadium redox flow battery[J]. Nano Letters, 2013,13(3):1330-1335. |
[6] | Lin D( 林顿), Zhang X Y( 张熙悦), Zeng Y X( 曾银香 ), et al. Recent advances on carbon and transition metallic compound electrodes for high-performance supercapacitors[J]. Journal of Electrochemistry( 电化学), 2017,23(5):560-580. |
[7] | Zhang Y M, Wang F, Zhu H , et al. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors[J]. Applied Surface Science, 2017,426(44):99-106. |
[8] | Mehboob S, Mehmood A, Lee J Y , et al. Excellent electrocatalytic effects of tinthrough in situ electrodeposition on the performance of all-vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2017,5(33): 17388-17400. |
[9] | Ye J L( 叶江林), Zhu Y W( 朱彦武 ). Porous carbon materials produced by KOH activation for supercapacitor electrodes[J]. Journal of Electrochemistry( 电化学), 2017,23(5):548-559. |
[10] | Zhou Y, Liu L, Shen Y , et al. Carbon dots promoted vanadium flow batteries for all climate energy storage[J]. Chemical Communications, 2017,53(54):7565-7568. |
[11] | Li W Y, Liu J G, Yan C W . Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO 2+/VO 2+ for avanadium redox flow battery [J]. Carbon, 2011,49(11):3463-3470. |
[12] | Kabtamu D M, Chen J Y, Chang Y C , et al. Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2016,4(29):11472-11480. |
[13] | Liu H J, Yang L X, Xu Q , et al. An electrochemically activated graphite electrode with excellent kinetics for electrode processes of V(II)/V(III) and V(IV)/V(V) couples in a vanadium redox flow battery[J]. RSC Advances, 2014,4(98):55666-55670. |
[14] | Wang G( 王刚), Chen J W( 陈金伟), Zhu S F( 朱世富 ), et al. Activation of carbon electrodes for all-vanadium redox flow battery[J]. Progress in Chemistry( 化学进展), 2015,27(10):1343-1355. |
[15] | Jing M H, Zhang X S, Fan X Z , et al. CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery[J]. Electrochimica Acta, 2016,215:57-65. |
[16] | Liu S Q( 刘素琴), Guo X Y( 郭小义), Huang K L( 黄可龙 ), et al. Research on the graphite felt of vanadium battery electrode materials[J]. Battery( 电池), 2005,35(3):183-184. |
[17] | Sun H( 孙红), Liu H R( 刘浩然), Li J( 李洁 ), et al. Effects of the graphite felt electrode acid or thermal treatment on characteristics of all vanadium flow battery[J]. Journal of Shenyang Jianzhu University( 沈阳建筑大学学报), 2018,34(6):1110-1117. |
[18] | Liu D( 刘迪), Tan N( 谭宁), Huang K L( 黄可龙 ), et al. The electrochemical treatment of the graphite felt electrode materials used in vanadium redox flow battery[J]. Power Technology( 电源技术), 2006,30(3):224-226. |
[19] | Mazúr P, Mrlík J, Beneš J , et al. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization[J]. Journal of Power Sources, 2018,380:105-114. |
[20] | Zhang W G, Xi J Y, Li Z H , et al. Electrochemical activation of graphite felt electrode for VO 2+/VO 2+ redox couple application [J]. Electrochimica Acta, 2013,89(1):429-435. |
[21] | Zhao T S( 赵天寿), Jiang H R( 蒋浩然 ). 液流电池电极及其制备方法和液流电池[P]. 中国专利: CN108346806A |
2018-07-31. | |
[22] | Liu Y C, Shen Y, Yu L H , et al. Holey-engineered electrodes for advanced vanadium flow batteries[J]. Nano Energy, 2018,43:55-62. |
[23] | Jing M H, Wei Z F, Su W , et al. Improved electrochemical performance for vanadium flow battery by optimizing the concentration of the electrolyte[J]. Journal of Power Sources, 2016,324:215-223. |
[24] | Wei G J, Su W, Wei Z F , et al. Effect of the graphitization degree for electrospun carbon nanofibers on their electrochemical activity towards VO 2+/VO 2+ redox couple [J]. Electrochimica Acta, 2016,199:147-153. |
[25] | Tan N( 谭宁), Huang K L( 黄可龙), Liu S Q( 刘素琴 ), et al. Activation mechanism study of electrochemical treated graphite felt for vanadium redox cell by electrochemical impedance spectrum[J]. Acta Chimica Sinica( 化学学报), 2006,64(6):584-588. |
[26] | Hu G J, Jing M H, Wang D W , et al. A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries[J]. Energy Storage Materials, 2018,13:66-71. |
[27] | Su X L( 苏秀丽), Yang L L( 杨霖霖), Zhou Y( 周禹 ), et al. Developments of electrodes for vanadium redox flow battery[J]. Energy Storage Science and Technology( 储能科学与技术), 2019,8(1):65-74. |
[28] | Abbas S, Lee H, Hwang J , et al. A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery[J]. Carbon, 2018,128:31-37. |
[1] | Lü Zhe, WEI Bo, WANG Zhi-hong, TIAN Yan-ting. Materials, Micro-Stacks and Related Applications of Single-Chamber Solid Oxide Fuel Cells [J]. Journal of Electrochemistry, 2020, 26(2): 230-242. |
[2] | YANG Zhi, SHEN Ya-yun, ZHOU E, WEI Cheng-ling, QIN Hao-li, TIAN Juan. Effect of Nitrogen Content in Catalyst Precursor on Activity of FeN/C Catalyst for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2020, 26(1): 130-135. |
[3] | WANG Hong-hui, MA Ming-jie, FENG Jie, KANG Huang-ya, HUANG Wen-jie. Electrochemical Performances of Neodymium Doped Lead Dioxide Composite Anode [J]. Journal of Electrochemistry, 2018, 24(4): 367-374. |
[4] | Qinglong Tan, Haining Wang, Shanfu Lu, Dawei Liang, Chunxiao Wu, Yan Xiang. Effects of surface modification modes on proton-over-vanadium ion selectivity of Nafion®membrane for application in vanadium redox flow battery [J]. Journal of Electrochemistry, 2017, 23(4): 409-419. |
[5] | LIAN Feng, XIN Yong-lei*, MA Bo-jiang, XU Li-kun. Effect of Carbon Nanotubes on Anodic Properties of Ti/Ru-Ir-Sn Oxides [J]. Journal of Electrochemistry, 2015, 21(4): 375-381. |
[6] | ZHANG Li, DONG Wen-yan, YANG Tai-lai, LIANG Zhen-hai*. Preparation of ZrO2-Doped Nb/PbO2 Electrode and Electrocatalytic Performance of Methyl Orange Degradation [J]. Journal of Electrochemistry, 2015, 21(3): 294-298. |
[7] | ZHANG Huan, QIN Lin-Lin, SHI Yi-Ning, ZHENG Ming-Sen, DONG Quan-Feng*, TIAN Zhao-Wu*. Electrochemical Activities of Oxygen-Doped Carbon Surface for V(IV)/V(V) Redox Couple [J]. Journal of Electrochemistry, 2013, 19(2): 120-124. |
[8] | Jin Luo, Lefu Yang, Binghui Chen, Chuanjian Zhong*. Ternary Alloy Electrocatalysts for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2012, 18(5、6): 496-507. |
[9] | LU Jun-Tao, XIAO Li, WANG De-Li, SUN Yu-Bao, SUO Yan-Ge, ZHUANG Lin. Methodological Significance of “Property-Activity Relationship” for Catalyst Studies [J]. Journal of Electrochemistry, 2012, 18(3): 215-222. |
[10] | MA Chun-An, YU Bin, SHI Mei-Qin, LANG Xiao-Ling. Preparation and Electrocatalytic Activity of the Pt/WC/TiO2 Composites [J]. Journal of Electrochemistry, 2011, 17(2): 149-154. |
[11] | WANG Cui-hong,KONG Yi-bing,XIA Xing-hua. Influence of Electric Field on the Adsorption and Bioactivity of Hemoglobin on A Macroporous Gold Electrode [J]. Journal of Electrochemistry, 2011, 17(1): 24-30. |
[12] | NIU Feng-juan,YI Qing-feng. A Titanium-Supported Nanoporous Pd Electrocatalyst for Methanol Oxidation [J]. Journal of Electrochemistry, 2011, 17(1): 67-72. |
[13] | YANG Fang-zu,CHEN Ming-hui,HUANG Xia-jing,TIAN Zhong-qun,ZHOU Shao-min. Electroless Deposition and Characterization of Nickel Coating in Lead-and Cadmium-free Bath [J]. Journal of Electrochemistry, 2010, 16(4): 430-435. |
[14] | LIU Dong-dong,LIN Mao-cai,GUAN Tao,YU Qing-chun. Research on Nafion/SiO_2 Composite Membrane in All Vanadium Redox Flow Battery [J]. Journal of Electrochemistry, 2010, 16(4): 455-459. |
[15] | ZHONG Yan,YAN Liang-liang,RAO Gui-shi,DENG Xiao-cong, WEN Fei-peng,XU Jin-long,ZHONG Qi-ling* . The SERS Effect of Au_(core)@Pt_(shell) Nanoparticles with Different Pt Shell Thicknesses [J]. Journal of Electrochemistry, 2010, 16(3): 300-304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||