Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (3): 347-358. doi: 10.13208/j.electrochem.190428
• Articles • Previous Articles Next Articles
WANG Lai-yu1, XI Xin1, WU Dong-qing2, LIU Xiong-yu1, JI Wei1, LIU Rui-li1*()
Received:
2019-04-28
Revised:
2019-08-02
Online:
2020-06-28
Published:
2019-11-06
Contact:
LIU Rui-li
E-mail:ruililiu@sjtu.edu.cn
Supported by:
CLC Number:
WANG Lai-yu, XI Xin, WU Dong-qing, LIU Xiong-yu, JI Wei, LIU Rui-li. Ordered Mesoporous Carbon/Graphene/Nickel Foam for Flexible Dopamine Detection with Ultrahigh Sensitivity and Selectivity[J]. Journal of Electrochemistry, 2020, 26(3): 347-358.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.190428
Sample | Method | Linear range/ (μmol·L-1) | Detection limit/ (μmol·L-1) | Selectivity | Ref. |
---|---|---|---|---|---|
pHQ/AuNPs/Ni | DPV | 0.1-10 | 0.04 | AA | [1] |
N,P-co-doped carbon cloth | DPV | 2-200 | 0.6 | AA, UA, GCa | [2] |
Graphite/plastic | Amperob | 10-550 | 3 | AA, UA | [3] |
Eox-SWCNT/PET | DPV | 1.5-30 | 0.51 | AA, UA, GC | [4] |
Tyrosinase/NiO/ITO | CV | 2-100 | 1.038 | _ | [5] |
PE | DPV | 30-100 | 5.2 | _ | [6] |
OMC/CSF | Ampero | 0.2-80 | 0.11 | AA, UA, GC | [7] |
OMC/G/Ni | Ampero | 0.05-58.75 | 0.019 | AA, UA, GC | This work |
[1] |
Diaz-Diestra D, Thapa B, Beltran-Huarac J, et al. L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity[J]. Biosensors & Bioelectronics, 2017,87:693-700.
URL pmid: 27631684 |
[2] | Guan L H( 关利浩), Wang C( 王超), Zhang W( 张望), et al. A facile strategy for two-step fabrication of gold nanoelectrode for in vivo dopamine detection[J]. Journal of Electrochemistryl( 电化学), 2019,25(2):244-251. |
[3] |
Taylor I M, Robbins E M, Catt K A, et al. Enhanced dopa-mine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes[J]. Biosensors and Bioelectronics, 2017,89:400-410.
doi: 10.1016/j.bios.2016.05.084 URL pmid: 27268013 |
[4] | Dong P F( 董鹏飞), Li N( 李娜), Zhao H Y( 赵海燕), et al. Synjournal of keggin polyoxometalates modified carbon paste electrode as a sensor for dopamine detection[J]. Journal of Electrochemistryl( 电化学), 2018,24(5):555-562. |
[5] |
Huang S, Song S S, Yue H Y, et al. ZnO nanosheet balls anchored onto graphene foam for electrochemical determination of dopamine in the presence of uric acid[J]. Sensors and Actuators B: Chemical, 2018,277:381-387.
doi: 10.1016/j.snb.2018.09.040 URL |
[6] | Chen P Y, Vittal R, Nien P C, et al. Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion[J]. Biosensors and Bio-electronics, 2009,24(12):3504-3509. |
[7] |
Gao G, Zhang Z K, Wang K, et al. One-pot synjournal of dendritic Pt3Ni nanoalloys as nonenzymatic electrochemical biosensors with high sensitivity and selectivity for dopamine detection[J]. Nanoscale, 2017,9(31):10998-11003.
doi: 10.1039/c7nr03760k URL pmid: 28752884 |
[8] |
Chen J L, Yan X P, Meng K, et al. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine[J]. Analytical Chemistry, 2011,83(22):8787-8793.
doi: 10.1021/ac2023537 URL |
[9] |
Qu K G, Wang J S, Ren J S, et al. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine[J]. Chemistry - A European Journal, 2013,19(22):7243-7249.
doi: 10.1002/chem.v19.22 URL |
[10] |
Cheuk M Y, Lo Y C, Poon W T. Determination of urine catecholamines and metanephrines by reversed-phase liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatograph, 2017,35(10):1042-1047.
doi: 10.3724/SP.J.1123.2017.06011 URL |
[11] | Tang L J, Li S, Han F, et al. SERS-active Au@Ag nano-rod dimers for ultrasensitive dopamine detection[J]. Bio-sensors and Bioelectronics, 2015,71:7-12. |
[12] |
Zan X L, Bai H W, Wang C X, et al. Graphene paper decorated with a 2D array of dendritic platinum nanoparticles for ultrasensitive electrochemical detection of dopamine secreted by live cells[J]. Chemistry - A European Journal, 2016,22(15):5204-5210.
doi: 10.1002/chem.201504454 URL |
[13] |
Das A K, Kuchi R, Van P C, et al. Development of an Fe3O4@Cu silicate based sensing platform for the electrochemical sensing of dopamine[J]. RSC Advances, 2018,8(54):31037-31047.
doi: 10.1039/C8RA05885G URL |
[14] | Yang Y R, Gao W. Wearable and flexible electronics for continuous molecular monitoring[J]. Chemical Society Re-views, 2019,48(6):1465-1491. |
[15] |
Cai W H, Lai T, Du H J, et al. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor[J]. Sensors and Actuators B: Chemical, 2014,193:492-500.
doi: 10.1016/j.snb.2013.12.004 URL |
[16] |
Hsu M S, Chen Y L, Lee C Y, et al. Gold nanostructures on flexible substrates as electrochemical dopamine sensors[J]. ACS Applied Materials & Interfaces, 2012,4(10):5570-5575.
doi: 10.1021/am301452b URL pmid: 23020235 |
[17] |
Liu J, He Z M, Xue J W, et al. A metal-catalyst free, flexible and free-standing chitosan/vacuum-stripped graphene/polypyrrole three dimensional electrode interface for high performance dopamine sensing[J]. Journal of Materials Chemistry B, 2014,2(17):2478-2482.
doi: 10.1039/c3tb21355b URL |
[18] |
Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011,10(6):424-428.
doi: 10.1038/nmat3001 URL pmid: 21478883 |
[19] |
Fang Y, Gu D, Zou Y, et al. a low-concentration hydrothermal synjournal of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie International Edition, 2010,49(43):7987-7991.
doi: 10.1002/anie.201002849 URL pmid: 20839199 |
[20] |
Sajid M, Nazal M K, Mansha M, et al. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review[J]. TrAC Trends in Analytical Chemistry, 2016,76:15-29.
doi: 10.1016/j.trac.2015.09.006 URL |
[21] |
Ndamanisha J C, Guo L P. Ordered mesoporous carbon for electrochemical sensing: A review[J]. Analytica Chimica Acta, 2012,747:19-28.
doi: 10.1016/j.aca.2012.08.032 URL pmid: 22986131 |
[22] |
Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chemistry of Materials, 2005,17(18):4577-4593.
doi: 10.1021/cm0485658 URL |
[23] |
Zhou M, Shang L, Li B L, et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications, 2008,10(6):859-863.
doi: 10.1016/j.elecom.2008.03.008 URL |
[24] |
Yan X, Bo X J, Guo L P. Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode[J]. Sensors and Actuators B: Chemical, 2011,155(2):837-842.
doi: 10.1016/j.snb.2011.01.058 URL |
[25] |
Jia N Q, Wang Z Y, Yang G F, et al. Electrochemical pro-perties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications, 2007,9(2):233-238.
doi: 10.1016/j.elecom.2006.08.050 URL |
[26] |
Zhou M, Shang L, Li B L, et al. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors[J]. Biosensors and Bioelectronics, 2008,24(3):442-447.
doi: 10.1016/j.bios.2008.04.025 URL pmid: 18541421 |
[27] | Ya Y, Wang T S, Xie L P, et al. Highly sensitive electrochemical sensor based on pyrrolidinium ionic liquid modified ordered mesoporous carbon paste electrode for determination of carbendazim[J]. Analytical Methods, 2015,7(4):1493-1498. |
[28] | Zhu G Y, He Z, Chen J, et al. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode[J]. Nano-scale, 2014,6(2):1079-1085. |
[29] |
Chae S J, Günes F, Kim K K, et al. Synjournal of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation[J]. Advanced Materials, 2009,21(22):2328-2333.
doi: 10.1002/adma.v21:22 URL |
[30] | Liu R L, Wan L, Liu S Q, et al. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors[J]. Advanced Functional Materials, 2015,25(4):526-533. |
[31] | Xi X, Wu D Q, Han L, et al. Highly uniform carbon sheets with orientation-adjustable ordered mesopores[J]. ACS Nano, 2018,12(6):5436-5444. |
[32] |
Fang Y, Lv Y Y, Che R C, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synjournal and efficient lithium ion storage[J]. Journal of the American Chemical Society, 2013,135(4):1524-1530.
URL pmid: 23282081 |
[33] | Bai Y, Wang W Q, Wang R R, et al. Controllable synjournal of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(23):12530-12538. |
[34] | Dong X C, Ma Y W, Zhu G Y, et al. Synjournal of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing[J]. Journal of Materials Chemistry, 2012,22(33):17044-17048. |
[35] | Yu M, Chen J P, Liu J H, et al. Mesoporous NiCO2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation[J]. Electro-chimica Acta, 2015,151:99-108. |
[36] | He P, Yu X Y, Lou X W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angew-andte Chemie International Edition, 2017,56(14):3897-3900. |
[37] |
Wang X L, Li Q, Pan H Y, et al. Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction[J]. Nanoscale, 2015,7(47):20290-20298.
doi: 10.1039/c5nr05864c URL pmid: 26579622 |
[38] | Shen Y, Sheng Q L, Zheng J B. A high-performance electrochemical dopamine sensor based on a platinum-nickel bimetallic decorated poly(dopamine)-functionalized reduced graphene oxide nanocomposite[J]. Analytical Met-hods, 2017,9(31):4566-4573. |
[39] | Fan H Q, Quan L X, Yuan M Q, et al. Thin Co3O4 nano-sheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors[J]. Electrochimica Acta, 2016,188:222-229. |
[40] | Walcarius A. Recent trends on electrochemical sensors based on ordered mesoporous carbon[J]. Sensors, 2017,17(8):1863. |
[41] | Zhang X, Zhang Y C, Ma L X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid[J]. Sensors and Actuators B: Chemical, 2016,227:488-496. |
[42] | Liu X Y, Xi X, Chen C L, et al. Ordered mesoporous carbon-covered carbonized silk fabrics for flexible electrochemical dopamine detection[J]. Journal of Materials Che-mistry B, 2019,7(13):2145-2150. |
[43] |
Jothi L, Neogi S, Jaganathan S K, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons[J]. Biosensors and Bioelectronics, 2018,105, 236-242.
doi: 10.1016/j.bios.2018.01.040 URL pmid: 29412948 |
[44] | Wang Y, Li Y M, Tang L H, et al. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochemistry Communications, 2009,11(4):889-892. |
[45] | Numan A, Shahid M M, Omar F S, et al. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sensors and Actuators B: Chemical, 2017,238:1043-1051. |
[46] |
Thanh T D, Balamurugan J, Lee S H, et al. Effective seed-assisted synjournal of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine[J]. Biosensors and Bioelectronics, 2016,81:259-267.
doi: 10.1016/j.bios.2016.02.070 URL pmid: 26967913 |
[47] |
Gao W, Emaminejad S, Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016,529(7587):509-514.
URL pmid: 26819044 |
[48] | Li S J, He J Z, Zhang M J, et al. Electrochemical detection of dopamine using water-soluble sulfonated graphene[J]. Electrochimica Acta, 2013,102:58-65. |
[1] | Qian Guo, Jia-Long Fu, Cheng-Yan Zhang, Chao-Yue Cai, Cheng Wang, Li-Hua Zhou, Rui-Bo Xu, Ming-Yan Wang. Preparation of CoO/RGO@Ni Foam Electrode and Its Electrocatalytic Reduction of CO2 [J]. Journal of Electrochemistry, 2021, 27(4): 449-455. |
[2] | Shuang-Juan Liu, Hai-Jing Wang, Jing Guo, Peng-Cheng Wang, Hao Zhou, Cai Meng, Han-Jie Guo. A Preliminary Study on Graphene Film-Metal Composites Prepared by Electrodeposition [J]. Journal of Electrochemistry, 2021, 27(4): 396-404. |
[3] | Yun-Feng Zhang, Jia-Ming Dong, Chang Tan, Shi-kang Huo, Jia-ying Wang, Yang He, Ya-Ying Wang. Preparation and Performance Investigation of Li-SGO doped Semi-IPNs Porous Single Ion Conducting Polymer electrolyte [J]. Journal of Electrochemistry, 2021, 27(1): 108-117. |
[4] | XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites [J]. Journal of Electrochemistry, 2020, 26(6): 890-899. |
[5] | Chen Pin-song, Hu Yi-tao, Zhang Xin-yi, Shen Pei-kang. Effect of Stereotaxically-Constructed Graphene on the Negative Electrode Performance of Lead-Acid Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 834-843. |
[6] | ZHANG Ze-Yang, SUN Lan, LIN Chang-Jian. Preparations and Photoelectrochemical Performances of RGO-TiO2 Nanotubes Arrays [J]. Journal of Electrochemistry, 2020, 26(6): 844-849. |
[7] | MENG Quan-hua, DENG Wen-wen, LI Chang-ming. Facile Synthesis of Nitrogen-Doped Graphene-Like Active Carbon Materials for High Performance Lithium-Sulfur Battery [J]. Journal of Electrochemistry, 2020, 26(5): 740-749. |
[8] | YAO Shuo, HUANG Tai-zhong, HAIDER Rizwan, FANG Heng-yi, YU Jie-mei, JIANG Zhan-kun, LIANG Dong, SUN Yue, YUAN Xian-xia. NiO@rGO Supported Palladium and Silver Nanoparticles as Electrocatalysts for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2020, 26(2): 270-280. |
[9] | ZHANG Bo, LIU Jia, LIU Xiao-chen, LI De-jun. Electrochemical Properties of Sulfur in Different Carbon Support Materials [J]. Journal of Electrochemistry, 2019, 25(6): 749-756. |
[10] | LI Er-ling, YANG Fa, RUAN Ming-bo, SONG Ping, XU Wei-lin. Effect of Morphology of Fe-N Codoped Carbon Nanomaterial on Electrochemical Reduction Reactions [J]. Journal of Electrochemistry, 2019, 25(4): 486-496. |
[11] | YAN Chong, KOU Hua-ri, YAN Bo, LIU Xiao-jing, LI De-jun, LI Xi-fei. Ni/Mn3O4/NiMn2O4 Double-Shelled Hollow Spheres Embedded into Reduced Graphene Oxide as Advanced Anodes for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 112-121. |
[12] | XIA Yong-kang, GU Ming-yuan, YANG Hong-guan, YU Xin-zhi, LU Bing-an. CVD Preparation and Application of 3D Graphene in Electrochemical Energy Storage [J]. Journal of Electrochemistry, 2019, 25(1): 89-103. |
[13] | XIU Lu-yang,YU Meng-zhou,YANG Peng-ju,WANG Zhi-yu,QIU Jie-shan. Caging Porous Co-N-C Nanocomposites in 3D Graphene as Active and Aggregation-Resistant electrocatalyst for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2018, 24(6): 715-725. |
[14] | Xiaomin Wang, Huanglin Dou, Zhen Tian, Jiujun Zhang. Novel Composites between Nano-Structured Nickel Sulfides and Three-Dimensional Graphene for High Performance Supercapacitors [J]. Journal of Electrochemistry, 2017, 23(2): 217-225. |
[15] | Chi Zhang, Xu-Jun He, Gao-Ren Li. Reduced Graphene Oxide (RGO) Hollow Network Cages for High-Performance Electrochemical Energy Storage [J]. Journal of Electrochemistry, 2016, 22(3): 278-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||