Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (3): 328-337. doi: 10.13208/j.electrochem.190318
• Articles • Previous Articles Next Articles
CHEN Jia-hui1, ZHONG Xiao-bin2, HE Chao1, WANG Xiao-xiao2, XU Qing-chi1*(), LI Jian-feng1,2*(
)
Received:
2019-03-18
Revised:
2019-04-05
Online:
2020-06-28
Published:
2019-04-08
Contact:
XU Qing-chi,LI Jian-feng
E-mail:xuqingchi@xmu.edu.cn;li@xmu.edu.cn
CLC Number:
CHEN Jia-hui, ZHONG Xiao-bin, HE Chao, WANG Xiao-xiao, XU Qing-chi, LI Jian-feng. Synthesis and Raman Study of Hollow Core-Shell Ni1.2Co0.8P@N-C as an Anode Material for Sodium-Ion Batteries[J]. Journal of Electrochemistry, 2020, 26(3): 328-337.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.190318
Fig. 1
(A) Scheme showing synthesis procedure of Ni1.2Co0.8P@N-C; (B) Particle size distribution and (C) low magnification SEM image of NiCo PBA; High magnification SEM images of (D) NiCo PBA, (E) NiCo@RF, (F) Ni1.2Co0.8P@RF and (G) Ni1.2Co0.8P@N-C; (H) HRTEM image and (I-M) elemental mapping images of Ni1.2Co0.8P@N-C composite, illustrating the uniform distributions of (I) carbon, (J) nitrogen, (K) cobalt, (L) nickel and (M) phosphorus, respectively.
[1] |
Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001,414(6861):332-337.
doi: 10.1038/35104599 URL pmid: 11713539 |
[2] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657.
doi: 10.1038/451652a URL pmid: 18256660 |
[3] |
Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011,334(6052):75-79.
doi: 10.1126/science.1209150 URL pmid: 21903777 |
[4] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011,334(6058):928-935.
doi: 10.1126/science.1212741 URL pmid: 22096188 |
[5] |
Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017,46(12):3529-3614.
doi: 10.1039/c6cs00776g URL pmid: 28349134 |
[6] | Zhao C L, Lu Y X, Li Y M, et al. Novel methods for sodium-ion battery materials[J]. Small Methods, 2017, 1(5): UNSP 1600063. |
[7] |
Wu C, Dou S X, Yu Y. The state and challenges of anode materials based on conversion reactions for sodium storage[J]. Small, 2018,14(22):1703671.
doi: 10.1002/smll.v14.22 URL |
[8] |
Lu Y, Li L, Zhang Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018,2(9):1747-1770.
doi: 10.1016/j.joule.2018.07.028 URL |
[9] | Wang Q, Zhao C, Lu Y, et al. Advanced nanostructured anode materials for sodium-ion batteries[J]. Small, 2017,13(42):1701835. |
[10] | Hou H S, Qiu X Q, Wei W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017,7(24):1602898. |
[11] | Zhang G R( 张广瑞), Hu L Q( 胡利强), Zhang B Z( 张宝珠). A new type carbon composited molybdenum doped vanadium oxide nanowires as a cathode material for sodium ion batteries[J]. Journal of Electrochemistryl( 电化学), 2017,23(4):456-465. |
[12] | Liu Y C( 刘永畅), Chen C C( 陈程成), Zhang N( 张宁). Research and application of key materials for sodium-ion batteries[J]. Journal of Electrochemistryl( 电化学), 2016,22(5):437-452. |
[13] | Yang F H, Gao H, Chen J, et al. Phosphorus-based materials as the anode for sodium-ion batteries[J]. Small Methods, 2017, 1(11): UNSP 1700216. |
[14] | Wu C, Kopold P, van Aken P A, et al. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design[J]. Advanced Materials, 2017,29(3):1604015. |
[15] | Fan M, Chen Y, Xie Y, et al. Na+ fuel cells: half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes [J]. Advanced Functional Materials, 2016,26(28):5002-5002. |
[16] | Li W J, Yang Q R, Chou S L, et al. Cobalt phosphide as a new anode material for sodium storage[J]. Journal of Power Sources, 2015,294:627-632. |
[17] | Zhu J D, Chen C, Lu Y, et al. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries[J]. Carbon, 2015,94:189-195. |
[18] |
Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem, 2013,6(1):56-60.
URL pmid: 23225752 |
[19] |
Fu L J, Tang K, Song K P, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014,6(3):1384-1389.
URL pmid: 24306060 |
[20] | Liu H, Jia M Q, Cao B, et al. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability[J]. Journal of Power Sources, 2016,319:195-201. |
[21] | Dong C F, Guo L J, He Y Y, et al. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries[J]. Energy Storage Materials, 2018,15:234-241. |
[22] | Ge X L, Li Z Q, Yin L W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J]. Nano Energy, 2017,32:117-124. |
[23] |
Baddour-Hadjean R, Pereira-Ramos J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chemical Reviews, 2009,110(3):1278-1319.
URL pmid: 19921829 |
[24] | Zhao L( 赵亮), Hu Y S( 胡勇胜), Li H( 李泓), et al. Applications of Raman spectroscopy technique in lithium ion batteries[J]. Journal of Electrochemistryl( 电化学), 2011,17(1):12-23. |
[25] |
Tripathi A M, Su W N, Hwang B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018,47(3):736-851.
doi: 10.1039/c7cs00180k URL pmid: 29308803 |
[26] |
Hardwick L J, Ruch P W, Hahn M, et al. In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects[J]. Journal of Physics and Chemistry of Solids, 2008,69(5/6):1232-1237.
doi: 10.1016/j.jpcs.2007.10.017 URL |
[27] |
Stancovski V, Badilescu S. In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: a historical overview[J]. Journal of Applied Electrochemistry, 2014,44(1):23-43.
doi: 10.1007/s10800-013-0628-0 URL |
[28] | Zhong X B, Wang X X, Wang H Y, et al. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation[J]. Nano Research, 2018,11(7):3814-3823. |
[29] | Hu Y M( 胡玉梅). Synthesis and energy storage characterization of high electrical conductive metal phosphide electrode material[D]. Lanzhou: Lanzhou University of Technology, 2017. |
[30] | Li Z Q, Zhang L Y, Ge X L, et al. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J]. Nano Energy, 2017,32:494-502. |
[31] |
Miao X G, Yin R Y, Ge X L, et al. Ni2P@carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries[J]. Small, 2017, 13(44): UNSP 1702138.
doi: 10.1002/smll.201701561 URL pmid: 28722318 |
[32] | Yang Q R, Li W J, Chou S L, et al. Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery[J]. RSC Advances, 2015,5(98):80536-80541. |
[33] | Carmalt C J, Morrison D E, Parkin I P. Liquid-mediated metathetical synjournal of binary and ternary transition-metal pnictides[J]. Polyhedron, 2000,19(7):829-833. |
[34] | Ma L B, Shen X P, Zhou H, et al. CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015,3(10):5337-5343. |
[35] | Liu C L, Zhang G, Yu L, et al. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution[J]. Small, 2018,14(22):1800421. |
[36] | Tian J Q, Chen J, Liu J Y, et al. Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting[J]. Nano Energy, 2018,48:284-291. |
[37] |
Chang J F, Feng L G, Liu C P, et al. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells[J]. Angewandte Chemie International Edition, 2014,53(1):122-126.
doi: 10.1002/anie.201308620 URL pmid: 24511636 |
[38] | Tuinstra F, Koenig J L. Characterization of graphite fiber surfaces with Raman spectroscopy[J]. Journal of Composite Materials, 1970,4(4):492-499. |
[39] | Hardwick L J, Buqa H, Holzapfel M, et al. Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: an in situ Raman and SEM study[J]. Electrochimica Acta, 2007,52(15):4884-4891. |
[40] | Inaba M, Yoshida H, Ogumi Z, et al. In situ Raman study on electrochemical Li intercalation into graphite[J]. Journal of The Electrochemical Society, 1995,142(1):20-26. |
[41] |
Lin X M, Diemant T, Mu X, et al. Spectroscopic investigations on the origin of the improved performance of composites of nanoparticles/graphene sheets as anodes for lithium ion batteries[J]. Carbon, 2018,127:47-56.
doi: 10.1016/j.carbon.2017.10.076 URL |
[42] | Kim H, Hong J, Park Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015,25(4):534-541. |
[43] |
Yun Y S, Park K Y, Lee B, et al. Sodium-ion storage in pyroprotein-based carbon nanoplates[J]. Advanced Materials, 2015,27(43):6914-6921.
URL pmid: 26421382 |
[44] | Qiu S, Xiao L, Sushko M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017,7(17):1700403. |
[1] | Yin-Fei Shen, Yan-Li Chen, Sheng-Xu Wang, Ye Zhu, Wen-Chang Wang, Min-Xian Wu, Zhi-Dong Chen. Electrochemical SERS study of Benzotriazole and 3-mercapto-1-propanesulfonate in Acidic Solution on Copper Electrode [J]. Journal of Electrochemistry, 2022, 28(6): 2104451-. |
[2] | Hui-Yuan Peng, Jia-Zheng Wang, Jia Liu, Huan-Huan Yu, Jian-De Lin, De-Yin Wu, Zhong-Qun Tian. Investigation on Electrochemical Processes of p-Aminothiophenol on Gold Electrode of Nanostructures [J]. Journal of Electrochemistry, 2022, 28(4): 2106281-. |
[3] | Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang. Functional Sulfate Electrolytes Enable the Enhanced Cycling Stability of NaTi2(PO4)3/C Anode Material for Aqueous Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2021, 27(6): 605-613. |
[4] | Zhen-Lang Liang, Yao Yang, Hao Li, Li-Ying Liu, Zhi-Cong Shi. Lithium Storage Performance of Hard Carbons Anode Materials Prepared by Different Precursors [J]. Journal of Electrochemistry, 2021, 27(2): 177-184. |
[5] | Li-Wen Wu, Wei Wang, Yi-Fan Huang. Electrochemical Surface-Enhanced Raman Spectroscopic Studies on Nickel Ultramicroelectrode [J]. Journal of Electrochemistry, 2021, 27(2): 208-215. |
[6] | DUAN Ming-tao, MENG Yan-shuang, ZHANG Hong-shuai. Preparations and Sodium Storage Properties of Ni3S2@CNT Composite [J]. Journal of Electrochemistry, 2020, 26(6): 850-858. |
[7] | SU Min, DONG Jin-chao, LI Jian-feng. In-Situ Raman Spectroscopic Study of Electrochemical Reactions at Single Crystal Surfaces [J]. Journal of Electrochemistry, 2020, 26(1): 54-60. |
[8] | LING Yun, TANG Jing, LIU Guo-kun, ZONG Cheng. Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study in Electrochemical Reduction of P-Nitrothiophenol [J]. Journal of Electrochemistry, 2019, 25(6): 731-739. |
[9] | WANG Fan-fan, LIU Xiao-bin, CHEN Long, CHEN Cheng-cheng, LIU Yong-chang, FAN Li-zhen. Recent Progress in Key Materials for Room-Temperature Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 55-76. |
[10] | YAN Chong, KOU Hua-ri, YAN Bo, LIU Xiao-jing, LI De-jun, LI Xi-fei. Ni/Mn3O4/NiMn2O4 Double-Shelled Hollow Spheres Embedded into Reduced Graphene Oxide as Advanced Anodes for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2019, 25(1): 112-121. |
[11] | GAO Tian-yi, GONG Zheng-liang. Preparations and Electrochemical Performances of Carbon Coated Silicon/Graphite Composites [J]. Journal of Electrochemistry, 2018, 24(3): 253-261. |
[12] | CHEN Jia-li, ZHANG Xia-guang, WU De-yin, TIAN Zhong-qun. DFT Study of Water Assisted Hydrogen Dissociation on Gold Nanoparticles [J]. Journal of Electrochemistry, 2018, 24(3): 199-206. |
[13] | WANG You, ZENG Yi-wen, ZHONG Xing, LIU Xing, TANG Quan. Synthesis and Electrochemical Properties of Li3V2(BO3)3/C Anode Materials for Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2018, 24(2): 174-181. |
[14] | LI Quan-yi, YANG Qi, ZHAO Yan-hong. Electrochemical Performance of MoO2-C Composite Coatings [J]. Journal of Electrochemistry, 2018, 24(2): 160-165. |
[15] | JIANG Meng-xiu, ZHANG Jing, LI Yue-hua, ZHANG Rong. Cobalt-Based Nitrogen-Doped Carbon Non-Noble Metal Catalysts for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2017, 23(6): 627-637. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||