Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (1): 136-147. doi: 10.13208/j.electrochem.190114
Special Issue: “电催化和燃料电池”专题文章
• Articles • Previous Articles Next Articles
LU Hang-shuo1, HE Xiao-bo2,3, YIN Feng-xiang1,2,3,*(), LI Guo-ru2
Received:
2019-01-14
Revised:
2019-04-01
Online:
2020-02-28
Published:
2019-03-29
Contact:
YIN Feng-xiang
E-mail:yinfx@cczu.edu.cn
CLC Number:
LU Hang-shuo, HE Xiao-bo, YIN Feng-xiang, LI Guo-ru. Preparations of Nickel-Iron Hydroxide/Sulfide and Their Electrocatalytic Performances for Overall Water Splitting[J]. Journal of Electrochemistry, 2020, 26(1): 136-147.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.190114
Tab. 1
Sample information
Sample | Molar ratio of Ni2+/Fe3+ | Deposition potential/ V(vs. Ag/AgCl) | Deposition time/min | Thiourea/g | Temperature of sulfuration/°C | Loading/ (mg·cm-2) |
---|---|---|---|---|---|---|
Ni0Fe10/Ti | 0:10 | -1 | 20 | — | — | 0.2 |
Ni3Fe7/Ti | 3:7 | -1 | 20 | — | — | 2.3 |
Ni6Fe4/Ti | 6:4 | -1 | 20 | — | — | 3.0 |
Ni9Fe1/Ti | 9:1 | -1 | 20 | — | — | 7.4 |
Ni10Fe0/Ti | 10:0 | -1 | 20 | — | — | 7.0 |
Ni9Fe1S0.1/Ti | 9:1 | -1 | 20 | 0.10 | 200 | 8.2 |
Ni9Fe1S0.25/Ti | 9:1 | -1 | 20 | 0.25 | 200 | 7.9 |
Ni9Fe1S0.5/Ti | 9:1 | -1 | 20 | 0.50 | 200 | 8.1 |
Fig. 1
(A) XRD patterns of Ni-Fe/Ti electrodes prepared in electrodeposited solutions with different molar ratios of Ni2+/Fe3+, in which a: Ni10Fe0/Ti, b: Ni9Fe1/Ti, c: Ni6Fe4/Ti, d: Ni3Fe7/Ti, e: Ni0Fe10/Ti; (B) XRD patterns of Ni9Fe1S/Ti electrodes prepared with different amounts of thiourea, in which a: Ni9Fe1S0.1/Ti, b: Ni9Fe1S0.25/Ti, c: Ni9Fe1S0.5/Ti
Tab. 3
Oxygen evolution performance of different catalytic electrodes
Electrode | Substrate | Current density/ (mA·cm-2) | η/mV | Tafel slope/(mV·dec-1) | KOH/ ( mol·L-1) | Ref. |
---|---|---|---|---|---|---|
Ni9Fe1/Ti | Ti mesh | 50 | 280 | 30 | 0.1 | This work |
NiFe LDH | Ni foam | 10 | 240 | — | 1 | [9] |
NiCo-LDH | Ni foam | 10 | 420 | 113 | 0.1 | [10] |
Cu@NiFe LDH | Cu foam | 100 | 280 | 27.8 | 1 | [11] |
Ni(OH)2 | Ni foam | 50 | 330 | 150 | 1 | [31] |
Ni70Fe30(H) | Glassy carbon | 10 | 292 | 30.4 | 0.1 | [30] |
CoNi(OH)x | Cu foil | 10 | 280 | 77 | 1 | [32] |
NiMo HNRs | Ti mesh | 10 | 310 | 47 | 1 | [33] |
IrOx/C | Glassy carbon | 10 | 326 | 41.7 | 0.1 | [30] |
Tab. 5
Hydrogen evolution performance of different catalytic electrodes
Electrode | Substrate | Current density/ (mA·cm-2) | η/mV | Tafel slope/(mV·dec-1) | KOH/ ( mol·L-1) | Ref. |
---|---|---|---|---|---|---|
Ni9Fe1S0.25/Ti | Ti mesh | 50 | 269 | 126 | 0.1 | This work |
NiFeS | Ni foam | 10 | 180 | 53 | 1 | [16] |
NiFeP | Ni foam | 10 | 87 | 48 | 1 | [34] |
Fe0.1-NiS2NA | Ti mesh | 50 | ~300 | 108 | 1 | [31] |
NiMoS4 | Ti mesh | 50 | 263 | 97 | 0.1 | [35] |
NiCo2S4 nanowire | Ni foam | 10 | 210 | 58.9 | 1 | [36] |
Ni5P4 | Ni foil | 10 | 150 | 53 | 1 | [37] |
NiSe | Ni foam | 10 | 96 | 120 | 1 | [38] |
Pt/C | Ti mesh | 50 | ~180 | 58 | 0.1 | [35] |
Tab. 8
Overall water splitting activity of different catalytic electrodes
Electrode | Substrate | Current density/(mA·cm-2) | Voltage/V | KOH/ ( mol·L-1) | Ref. |
---|---|---|---|---|---|
Ni9Fe1/Ti(+)||Ni9FeS0.25/Ti(-) | Ti mesh | 50 | 1.69 | 0.1 | This work |
IrO2(+)||Pt(-) | Cu foam | 50 | ~1.70 | 1 | [11] |
NiFe LDH | Ni foam | 10 | 1.70 | 1 | [21] |
Co2VO4(+)||Co/VN(-) | Glassy carbon | 10 | 1.65 | 1 | [40] |
NiFe LDH@NiCoP | Ni foam | 10 | 1.57 | 1 | [22] |
Ni3S2 | Ni foam | 10 | 1.76 | 1 | [23] |
NiCo3-xS4/Ni3S4 | Ni foam | 10 | 1.53 | 1 | [24] |
100 | 1.8 |
[1] |
Holladay J D, Hu J, King D L , et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009,139(4):244-260.
doi: 10.1016/j.cattod.2008.08.039 URL |
[2] | Li Y( 李阳), Luo Z Y( 罗兆艳), Ge J J( 葛君杰 ), et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(6):572-588. |
[3] | Xiao G( 肖钢 ). Fuel cell technology[M]. Bejing: Publishing House of Electronics Industry( 电子工业出版社), 2009. |
[4] | Lin Z D( 吝子东), Bai S( 白松), Zhang X H( 张晓辉 ). Development prospect of water electrolysis hydrogen production technology[J]. Chemical Defence on Ships( 舰船防化), 2014,2:48-54. |
[5] |
Zhang B, Zheng X L, Voznyy O , et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016,352(3):333-337.
doi: 10.1016/j.amjms.2016.05.033 URL pmid: 27650243 |
[6] |
Han A L, Jin S, Chen H L , et al. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0-14[J]. Journal of Materials Chemistry A, 2015,3(5):1941-1946.
doi: 10.1039/C4TA06071G URL |
[7] |
Bae S H, Kim J E, Randriamahazaka H , et al. Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Co nanowire network for highly efficient oxygen evolution[J]. Advanced Energy Materials, 2017,7(1):1601492.
doi: 10.1002/aenm.v7.1 URL |
[8] | Zhang X( 张晓), He X B( 何小波), Li X( 李响 ), et al. Recent progress in the electrocatalysts based on Fe, Co and Ni for electrocatalytic hydrogen evolution reaction[J]. The Journal of New Industrialization( 新型工业化), 2016,6(10):1-9. |
[9] |
Jiang N, You B, Sheng M L , et al. Bifunctionality and mechanism of electrodeposited nickel-phosphorous films for efficient overall water splitting[J]. ChemCatChem, 2016,8(1):106-112.
doi: 10.1002/cctc.201501150 URL |
[10] |
Jiang J, Zhang A L, Li L L , et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction[J]. Journal of Power Sources, 2015,278:445-451.
doi: 10.1016/j.jpowsour.2014.12.085 URL |
[11] | Yu L, Zhou H Q, Sun J Y , et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting[J]. Energy & Environmental Science, 2017,10(8):1820-1827. |
[12] |
Song F, Hu X L . Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014,5:4477-4485.
doi: 10.1038/ncomms5477 URL pmid: 25030209 |
[13] | Zhao D D( 赵丹丹), Zhang Nan( 张楠), Bu L Z( 卜令正 ) , et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(5):455-465. |
[14] | Ovshinsky S R, Fetcenko M A, Venkatesan S , et al. Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells[J]. Journal of Power Sources, 1994,70(2):294-294. |
[15] |
Trotochaud L, Young S L, Ranney J K , et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. Journal of the American Chemical Society, 2014,136(18):6744-6753.
doi: 10.1021/ja502379c URL |
[16] |
Ganesan P, Sivanantham A, Shanmugam S . Inexpensive electrochemical synjournal of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis[J]. Journal of Materials Chemistry A, 2016,4(42):16394-16402.
doi: 10.1039/C6TA04499A URL |
[17] |
Faber M S, Lukowski M A, Ding Q , et al. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis[J]. Journal of Physical Chemistry C, 2014,118(37):21347-21356.
doi: 10.1021/jp506288w URL |
[18] |
Kibsgaard J, Chen Z, Reinecke B N , et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012,11(11):963-969.
doi: 10.1038/NMAT3439 URL |
[19] |
Long X, Li G X, Wang Z L , et al. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media[J]. Journalof the American Chemical Society, 2015,137(37):11900-11903.
doi: 10.1021/jacs.5b07728 URL pmid: 26338434 |
[20] |
Wang D Y, Gong M, Chou H L , et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015,137(4):1587-1592.
doi: 10.1021/ja511572q URL pmid: 25588180 |
[21] |
Luo J S, Im J H, Mayer M T , et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts[J]. Science, 2014,345(6204):1593-1596.
doi: 10.1126/science.1258307 URL pmid: 25258076 |
[22] | Zhang H J, Li X P, H?hnel A , et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Advanced Functional Materials, 2018,14:1706847. |
[23] |
Feng L L, Yu G T, Wu Y Y , et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015,137(44):14023-14026.
doi: 10.1021/jacs.5b08186 URL pmid: 26352297 |
[24] |
Wu Y Y, Liu Y P, Li G D , et al. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays[J]. Nano Energy, 2017,35:161-170.
doi: 10.1016/j.nanoen.2017.03.024 URL |
[25] | Liu J( 刘佳), Ge X B( 葛性波 ). Recent advances in Fe based oxygen evolution catalysts via electrodeposition method[J]. Applied Chemical Industry( 应用化工), 2017,46(8):1603-1607. |
[26] |
Yarger M S, Steinmiller E M, Choi K S . Electrochemical synjournal of Zn-Al layered double hydroxide (LDH) films[J]. Inorganic Chemistry, 2008,47(13):5859-5865.
doi: 10.1021/ic800193j URL pmid: 18533629 |
[27] |
Pu Z H, Liu Q, Tang C , et al. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode[J]. Nanoscale, 2014,6(19):11031-11034.
doi: 10.1039/c4nr03037k URL |
[28] | Wang X H( 王新红 ). Study on the thermal analysis of thiourea[J]. Applied Chemical Industry( 应用化工), 2008,37(6):691-693. |
[29] |
Lin H L, Liu N, Shi Z P , et al. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2016,26(31):5590-5598.
doi: 10.1002/adfm.v26.31 URL |
[30] |
Lee E, Park A H, Park H U , et al. Facile sonochemical synjournal of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction[J]. Ultrasonics Sonochemistry, 2017,40(Pt A):552-557.
doi: 10.1016/j.ultsonch.2017.07.048 URL pmid: 28946457 |
[31] |
Yang N, Tang C, Wang K Y , et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting[J]. Nano Research, 2016,9(11):3346-3354.
doi: 10.1007/s12274-016-1211-x URL |
[32] |
Liu X, Cui S S, Sun Z J , et al. Self-supported copper oxide electrocatalyst for water oxidation at low overpotential and confirmation of its robustness by Cu K-Edge X-ray absorption spectroscopy[J]. Journal of Physical Chemistry C, 2016,120(2):831-840.
doi: 10.1021/acs.jpcc.5b09818 URL |
[33] |
Tian J Q, Cheng N Y, Liu Q , et al. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting[J]. Journal of Materials Chemistry A, 2015,3(40):20056-20059.
doi: 10.1039/C5TA04723D URL |
[34] |
Xing J, Li H, Cheng M M , et al. Electro-synjournal of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2016,4(36):13866-13873.
doi: 10.1039/C6TA05952J URL |
[35] |
Wang W Y, Yang L, Qu F L , et al. A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017,5(32):16585-16589.
doi: 10.1039/C7TA05521H URL |
[36] |
Sivanantham A, Ganesan P, Shanmugam S . Hierarchical NiCo2S4 nanowire arrays supported on ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J]. Advanced Functional Materials, 2016,26(26):4661-4672.
doi: 10.1002/adfm.v26.26 URL |
[37] |
Ledendecker M, Krick Calderón S, Papp C , et al. The synjournal of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(42):12361-12365.
doi: 10.1002/anie.201502438 URL pmid: 26129698 |
[38] |
Tang C, Cheng N Y, Pu Z H , et al. NiSe nanowire film supported on Nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(32):9351-9355.
doi: 10.1002/anie.201503407 URL pmid: 26136347 |
[39] |
Ling F, Jiang Z Q, Xu H T , et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting[J]. Journal of Catalysis, 2018,357:238-246.
doi: 10.1016/j.jcat.2017.11.017 URL |
[40] |
Xiao Y L, Tian C G, Tian M , et al. Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting[J]. Science China Materials, 61(1):80-90.
doi: 10.1007/s40843-017-9113-1 URL |
[1] | Jia-Xin Li, Li-Gang Feng. Surface Structure Engineering of FeNi-Based Pre-Catalyst for Oxygen Evolution Reaction: A Mini Review [J]. Journal of Electrochemistry, 2022, 28(9): 2214001-. |
[2] | Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao. Self-Supporting NiFe LDHs@Co-OH-CO3 Nanorod Array Electrode for Alkaline Anion Exchange Membrane Water Electrolyzer [J]. Journal of Electrochemistry, 2022, 28(9): 2214003-. |
[3] | Jing Ni, Zhao-Ping Shi, Xian Wang, Yi-Bo Wang, Hong-Xiang Wu, Chang-Peng Liu, Jun-Jie Ge, Wei Xing. Recent Development of Low Iridium Electrocatalysts toward Efficient Water Oxidation [J]. Journal of Electrochemistry, 2022, 28(9): 2214010-. |
[4] | Ao Zhou, Wei-Jian Guo, Yue-Qing Wang, Jin-Tao Zhang. The Rapid Preparation of Efficient MoFeCo-Based Bifunctional Electrocatalysts via Joule Heating for Overall Water Splitting [J]. Journal of Electrochemistry, 2022, 28(9): 2214007-. |
[5] | Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang. In-Situ/Operando57Fe Mössbauer Spectroscopic Technique and Its Applications in NiFe-based Electrocatalysts for Oxygen Evolution Reaction [J]. Journal of Electrochemistry, 2022, 28(3): 2108541-. |
[6] | Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li. Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production [J]. Journal of Electrochemistry, 2022, 28(10): 2214012-. |
[7] | Xue Sun, Ya-Jie Song, Ren-Long Li, Jia-Jun Wang. Catalytic Effect of Disordered Ru-O Configurations for Electrochemical Hydrogen Evolution [J]. Journal of Electrochemistry, 2022, 28(10): 2214011-. |
[8] | Li-Li Xu, Dong-Yan Ren, Xiao-Feng Zhao, Yong Yi. Janus-TiNbCO2 for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity [J]. Journal of Electrochemistry, 2021, 27(5): 570-578. |
[9] | Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao. Theoretical Studies of Metal-N-C for Oxygen Reduction and Hydrogen Evolution Reactions in Acid and Alkaline Solutions [J]. Journal of Electrochemistry, 2021, 27(2): 185-194. |
[10] | Xiang Qin, Zhong-Qiu Li, Jian-Bin Pan, Jian Li, Kang Wang, Xing-Hua Xia. Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array [J]. Journal of Electrochemistry, 2021, 27(2): 157-167. |
[11] | WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang. Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2020, 26(6): 815-824. |
[12] | XU Neng-neng, QIAO Jin-li. Recent Progress in Bifunctional Catalysts for Zinc-Air Batteries [J]. Journal of Electrochemistry, 2020, 26(4): 531-562. |
[13] | JIANG Peng-jie, LV Yi, CHEN Chang-miao, HE Hong-cheng, CAI Yong, ZHANG Ming. A Facile Route to Synthesize Pt-WO3 Nanosheets with Enhanced Electrochemical Performance for HER [J]. Journal of Electrochemistry, 2019, 25(5): 562-570. |
[14] | CHEN Dan-dan, GAO Xue-qing, LIU Hong-fei, ZHANG Wei, CAO Rui. Nickel Selenide Derived from [Ni(en)3](SeO3) Complex for Efficient Electrocatalytic Overall Water Splitting [J]. Journal of Electrochemistry, 2019, 25(5): 553-561. |
[15] | YIN Can, FU Wei-wei, FANG Ling, YOU Shi-li, ZHANG Hui-juan, WANG Yu. Three-Dimensional Porous VN Octahedron Catalyst with High Electrocatalytic Efficiency toward Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2019, 25(5): 579-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||