Journal of Electrochemistry ›› 2020, Vol. 26 ›› Issue (1): 130-135. doi: 10.13208/j.electrochem.180923
• Articles • Previous Articles Next Articles
YANG Zhi, SHEN Ya-yun, ZHOU E, WEI Cheng-ling, QIN Hao-li, TIAN Juan*()
Received:
2018-09-23
Revised:
2019-02-16
Online:
2020-02-28
Published:
2018-11-22
Contact:
TIAN Juan
E-mail:juan_tian@126.com
CLC Number:
YANG Zhi, SHEN Ya-yun, ZHOU E, WEI Cheng-ling, QIN Hao-li, TIAN Juan. Effect of Nitrogen Content in Catalyst Precursor on Activity of FeN/C Catalyst for Oxygen Reduction Reaction[J]. Journal of Electrochemistry, 2020, 26(1): 130-135.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.180923
Tab. 1
BET surface area, pore volume and average pore size for different FeN/BP catalysts
Sample/(weight ratio) | SBET/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm |
---|---|---|---|
FeN/BP(10/90) | 962.98 | 1.85 | 14.14 |
FeN/BP(20/80) | 824.48 | 2.17 | 10.54 |
FeN/BP(50/50) | 178.42 | 1.4 | 20.14 |
FeN/BP(80/20) | 87.08 | 0.79 | 17.38 |
Tab. 2
Element contents of FeN/BP catalysts with various weight ratios of phen/BP in catalyst precursor sample/(weight ratio)
Sample/(weight ratio) | C/wt% | N/wt% | O/wt% | Fe/wt% |
---|---|---|---|---|
FeN/BP(10/90) | 98.2±1.67 | 0.09±0.03 | 1.35±0.06 | 0.36±0.04 |
FeN/BP(20/80) | 98.01±2.55 | 0.31±0.06 | 1.46±0.10 | 0.22±0.05 |
FeN/BP(50/50) | 95.81±1.86 | 0.25±0.04 | 3.42±0.10 | 0.52±0.04 |
FeN/BP(80/20) | 95.92±2.32 | 1.26±0.06 | 2.24±0.09 | 0.58±0.04 |
[1] |
Debe M K . Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012,486(7401):43-51.
doi: 10.1038/nature11115 URL pmid: 22678278 |
[2] | Ding W( 丁炜), Zhang X( 张雪), Li L( 李莉 ), et al. Recent progress in heteroatoms doped carbon materials as a catalyst for oxygen reduction reaction[J]. Journal of Electrochemistry( 电化学), 2014,20(5):426-438. |
[3] | Chen C( 陈驰), Zhang X( 张雪), Zhou Z Y( 周志有 ), et al. Experimental boosting of the oxygen reduction activity of an Fe/N/C catalyst by sulfur doping and density functional theory calculations[J]. Acta Physico-Chimica Sinica( 物理化学学报), 2017,33(9):1875-1883. |
[4] | Lin L ( 林玲 ). Synthesis and evaluation of PGM-free Catalysts for proton exchange membrane fuel cell cathodes[D]. He Fei(合肥): University of Science and Technology of China( 中国科学技术大学), 2017. |
[5] |
Xia B Y, Ng W T, Wu H B , et al. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells[J]. Angewandte Chemie International Edition, 2012,51(29):7213-7216.
doi: 10.1002/anie.201201553 URL pmid: 22696282 |
[6] | Kong J F ( 孔建飞), Cheng W L( 程文龙 ). Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction[J]. Chinese Journal of Catalysis( 催化学报), 2017,38(6):951-969. |
[7] | Zhong G Y( 钟国玉), Wang H J( 王红娟), Yu H( 余皓 ), et al. A review of carbon-based non-noble catalysts for oxygen reduction reaction[J]. Acta Chimica Sinica( 化学学报), 2017,75(10):943-966. |
[8] | Gupta S, Tryk D, Bae I , et al. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction[J]. Journal of Applied Electrochemistry, 1989,19(1):19-27. |
[9] | Koslowski U I, Wurmbach I A, Fiechter S , et al. Nature of the catalytic centres of porphyrin based electrocatalysts for the ORR - A correlation of kinetic current density with the site density of Fe-N4 centres[J]. Journal of Physical Chemistry C, 2008,112(39):15356-15366. |
[10] |
Liu Q, Liu X, Zheng L , et al. The solid phase synjournal of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2018,57(5):1204-1208.
doi: 10.1002/anie.201709597 URL pmid: 29210167 |
[11] | Li J, Shraboni G, Liang W , et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction[J]. Energy & Environmental Science, 2017,9(7):1-50. |
[12] |
Wu G, More K L, Xu P , et al. A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability[J]. Chemical Communications, 2013,49(32):3291-3293.
doi: 10.1039/c3cc39121c URL pmid: 23420477 |
[13] | Hua Y Q, Jiang T T, Wang K , et al. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor[J]. Applied Catalysis B: Environmental, 2016,194:202-208. |
[14] | Wang K, Wang Y, Liang Z X , et al. Ordered mesoporous tungsten carbide/carbon composites promoted Pt catalyst with high activity and stability for methanol electrooxidation[J]. Applied Catalysis B: Environmental, 2014,147(7):518-525. |
[15] |
Lefevre M, Proietti E, Jaouen F , et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324(5923):71-74.
doi: 10.1126/science.1170051 URL pmid: 19342583 |
[16] | Liao S J( 廖世军), Pen H L( 彭洪亮), Zhang B Q( 张丙青 ). A novel n-doped carbon-based metal-free catalyst prepared and its oxygen reduction performance[J]. Journal of South China University of Technology(Natural Science Edition)( 华南理工大学学报(自然科学版)), 2012,40(10):121-127. |
[17] | Yang W( 杨伟), Chen S Z( 陈胜洲), Zhou H B( 邹汉波 ), et al. Progress in nitrogen-doped non-noble catalysts for oxygen reduction[J]. Chemical Industry and Engineering Progress( 化工进展), 2010,29(11):2085-2089. |
[18] | Bouwkamp-Wijnoltz A L, Visscher W, Van Veen J A R , et al. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ mössbauer study[J]. The Journal of Physical Chemistry B, 2002,106(50):12993-13001. |
[19] |
Jaouen F, Lefevre M, Dodelet J P , et al. Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores?[J]. Journal of Physical Chemistry C, 2006,110(11):5553-5558.
doi: 10.1021/jp057135h URL pmid: 16539496 |
[20] | Charreteur F, Jaouen F, Ruggeri S , et al. Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction[J]. Electrochimica Acta, 2008,53(6):2925-2938. |
[21] |
Zitolo A, Goellner V, Armel V , et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials[J]. Nature Materials, 2015,14(9):937-945.
doi: 10.1038/nmat4367 URL pmid: 26259106 |
[1] | Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang. Adjusting the Alloying Degree of Pt3Zn to Improve Acid Oxygen Reduction Activity and Stability [J]. Journal of Electrochemistry, 2022, 28(4): 2106091-. |
[2] | Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang. In Situ Characterization of Electrode Structure and Catalytic Processes in the Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2022, 28(3): 2108531-. |
[3] | Xue Wang, Li Zhang, Chang-Peng Liu, Jun-Jie Ge, Jian-Bing Zhu, Wei Xing. Recent Advances in Structural Regulation on Non-Precious Metal Catalysts for Oxygen Reduction Reaction in Alkaline Electrolytes [J]. Journal of Electrochemistry, 2022, 28(2): 2108501-. |
[4] | Rui-Qing Wang, Sheng Sui. Structure Analysis of PEMFC Cathode Catalyst Layer [J]. Journal of Electrochemistry, 2021, 27(6): 595-604. |
[5] | Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai. Copper Nanoparticles In-Situ Anchored on Nitrogen-Doped Carbon for High-Efficiency Oxygen Reduction Reaction Electrocatalyst [J]. Journal of Electrochemistry, 2021, 27(6): 671-680. |
[6] | Rong-Qiang Wei, Shi-An Li, Yi-Hui Liu, Zhi Yang, Qiu-Wan Shen, Guo-Gang Yang. Numerical Study on the Influences of Flow Channel and Rib Width Ratio on the Performance of Gas Diffusion Layer [J]. Journal of Electrochemistry, 2021, 27(5): 579-585. |
[7] | Hua Lin, Yi-Jin Wu, Jun-Tao Li, Yao Zhou. One-Pot Synthesis of Fe2O3@Fe-N-C Oxygen Reduction Electrocatalyst and Its Performance for Zinc-Air Battery [J]. Journal of Electrochemistry, 2021, 27(4): 366-376. |
[8] | Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan. DFT Study of Nim@Pt1Aun-m-1 (n=19, 38, 55, 79; m = 1, 6, 13, 19) Core-Shell ORR Catalyst [J]. Journal of Electrochemistry, 2021, 27(4): 357-365. |
[9] | Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang. Preparation of Co1-xS-MnS@CNTs/CNFs for Electrocatalytic Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2021, 27(3): 301-310. |
[10] | Zhi-Peng Wu, Chuan-Jian Zhong. Pd-Based Electrocatalysts for Oxygen Reduction and Ethanol Oxidation Reactions: Some Recent Insights into Structures and Mechanisms [J]. Journal of Electrochemistry, 2021, 27(2): 144-156. |
[11] | Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao. Theoretical Studies of Metal-N-C for Oxygen Reduction and Hydrogen Evolution Reactions in Acid and Alkaline Solutions [J]. Journal of Electrochemistry, 2021, 27(2): 185-194. |
[12] | LOU Jing-yuan, YOU Dong-jiang, LI Xue-jing. Step-by-Step Modification of Graphite Felt Electrode for Vanadium Redox Flow Battery [J]. Journal of Electrochemistry, 2020, 26(6): 876-884. |
[13] | ZHANG Yan-feng, XIAO Fei, CHEN Guang-yu, SHAO Min-hua. Fuel Cell Performance of Non-Precious Metal Based Electrocatalysts [J]. Journal of Electrochemistry, 2020, 26(4): 563-572. |
[14] | XU Ming-jun, LIU Jie, GE Jun-jie, LIU Chang-peng, XING Wei. Research Progress of Metal-Nitrogen-Carbon Catalysts toward Oxygen Reduction Reaction inm Changchun Institute of Applied Chemistry [J]. Journal of Electrochemistry, 2020, 26(4): 464-473. |
[15] | XU Neng-neng, QIAO Jin-li. Recent Progress in Bifunctional Catalysts for Zinc-Air Batteries [J]. Journal of Electrochemistry, 2020, 26(4): 531-562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||