Journal of Electrochemistry ›› 2017, Vol. 23 ›› Issue (2): 226-237.doi: 10.13208/j.electrochem.161251
• Special Issue in Honor of Professor Zhaowu Tian on His 90th Birthday • Previous Articles Next Articles
Nang Zhang1a, Meidan Ye1a, Xiaoru Wen1, Changjian Lin1,2*
Received:
2017-02-22
Revised:
2017-03-16
Online:
2017-04-28
Published:
2017-03-20
Contact:
Changjian Lin
E-mail:cjlin@xmu.edu.cn
Supported by:
The authors gratefully acknowledge the financial supports from the National Nature Science Foundation of China (21621091,21503177, 21321062), the National Basic Research Program of China (2012CB932900), the Fundamental Research Funds for the Central Universities of China (20720150031), and the project of 111 Program (B16029).
CLC Number:
Nang Zhang,Meidan Ye, Xiaoru Wen, Changjian Lin. Rutile TiO2 Nanosheet Arrays Planted on Magnetron Sputtered Ti Metal Layers for Efficient Perovskite Solar Cells[J]. Journal of Electrochemistry, 2017, 23(2): 226-237.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.161251
[1] E. Serrano,G. Rus,J. García-Martínez. Nanotechnology for sustainable energy[J]. Renewable &Sustainable Energy Reviews, 2009, 13(9): 2373-2384. [2] Nam-Gyu Park. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2014, (0) [3] Michael Gratzel. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13(9): 838-842. [4] Michael D. McGehee. Perovskite solar cells: Continuing to soar[J]. Nature Materials, 2014, 13(9): 845-846. [5] Gary Hodes,David Cahen. Photovoltaics: Perovskite cells roll forward[J]. Nature Photonics, 2014, 8(2): 87-88. [6] Martin A. Green,Thomas Bein. PHOTOVOLTAICS Perovskite cells charge forward[J]. Nature Materials, 2015, 14(6): 559-561. [7] Nam-Gyu Park. PEROVSKITE SOLAR CELLS Switchable photovoltaics[J]. Nature Materials, 2015, 14(2): 140-141. [8] Martin A. Green,Anita Ho-Baillie,Henry J. Snaith. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. [9] Gary Hodes. Perovskite-Based Solar Cells[J]. Science, 2013, 342(6156): 317-318. [10] Akihiro Kojima,Kenjiro Teshima,Yasuo Shirai,et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [11] Best research-cell efficiencies NREL (2016)[J]. Best research-cell efficiencies NREL (2016): www.nrel.gov/ncpv/images/efficiency_chart.jpg. [12] Kwan Wee Tan,David T. Moore,Michael Saliba,et al. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells[J]. ACS Nano, 2014, 8(5): 4730-4739. [13] Yehao Deng,Edwin Peng,Yuchuan Shao,et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science, 2015, 8(5): 1544-1550. [14] Chunhung Law,Lukas Miseikis,Stiochko Dimitrov,et al. Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns[J]. Advanced Materials, 2014, 26(36): 6268-6273. [15] Byung-wook Park,Bertrand Philippe,Torbjorn Gustafsson,et al. Enhanced Crystallinity in Organic-Inorganic Lead Halide Perovskites on Mesoporous TiO2 via Disorder-Order Phase Transition[J]. Chemistry of Materials, 2014, 26(15): 4466-4471. [16] Jeong-Hyeok Im,Jingshan Luo,Marius Franckevicius,et al. Nanowire Perovskite Solar Cell[J]. Nano Letters, 2015, 15(3): 2120-2126. [17] Natalia Yantara,Dharani Sabba,Fang Yanan,et al. Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition[J]. Chemical Communications, 2015, 51(22): 4603-4606. [18] Wallace CH Choy. Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells[J]. ACS nano, 2015, 9(1): 639-646. [19] Dongqin Bi,Ahmed M El-Zohry,Anders Hagfeldt,et al. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells[J]. ACS Photonics, 2015, 2: 589-594. [20] Taiyang Zhang,Mengjin Yang,Yixin Zhao,et al. Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion[J]. Nano Letters, 2015, 15(6): 3959-63. [21] Bing Cai,Yedi Xing,Zhou Yang,et al. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy & Environmental Science, 2013, 6(5): 1480-1485. [22] Tomas Leijtens,Giles E. Eperon,Sandeep Pathak,et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885. [23] Thomas Moehl,Jeong Hyeok Im,Yong Hui Lee,et al. Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO2 Blocking Layer under Reverse Bias[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3931-3936. [24] Ajay Kumar Jena,Hsin-Wei Chen,Atsushi Kogo,et al. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells[J]. Acs Applied Materials & Interfaces, 2015, 7(18): 9817-9823. [25] Belen Suarez,Victoria Gonzalez-Pedro,Teresa S. Ripolles,et al. Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1628-1635. [26] Dongqin Bi,Soo-Jin Moon,Leif Haggman,et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. Rsc Advances, 2013, 3(41): 18762-18766. [27] Junyan Xiao,Jiangjian Shi,Huibiao Liu,et al. Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)-Modified P3HT Hole-Transporting Material[J]. Advanced Energy Materials, 2015, 5(8): 1401943. [28] Jin Hyuck Heo,Sang Hyuk Im,Jun Hong Noh,et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7(6): 487-492. [29] Agnese Abrusci,Samuel D. Stranks,Pablo Docampo,et al. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers[J]. Nano Letters, 2013, 13(7): 3124-3128. [30] Jun-Yuan Jeng,Yi-Fang Chiang,Mu-Huan Lee,et al. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells[J]. Advanced Materials, 2013, 25(27): 3727-3732. [31] Chaoyang Kuang,Gang Tang,Tonggang Jiu,et al. Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells[J]. Nano Letters, 2015, 15(4): 2756-2762. [32] Nevena Marinova,Wolfgang Tress,Robin Humphry-Baker,et al. Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation[J]. ACS nano, 2015, 9(4): 4200-4209. [33] Hamed Azimi,Tayebeh Ameri,Hong Zhang,et al. A Universal Interface Layer Based on an Amine‐Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells[J]. Advanced Energy Materials, 2015, 5(8): 1401692. [34] Hui-Seon Kim,Chang-Ryul Lee,Jeong-Hyeok Im,et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Scientific Reports, 2012, 2: 591-598. [35] Mingzhen Liu,Michael B. Johnston,Henry J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398. [36] Shaowei Shi,Yongfang Li,Xiaoyu Li,et al. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites[J]. Materials Horizons, 2015, 2,378-405 [37] Woon Seok Yang,Jun Hong Noh,Nam Joong Jeon,et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. [38] Yaoming Xiao,Gaoyi Han,Yanping Li,et al. Preparation of high performance perovskite-sensitized nanoporous titanium dioxide photoanodes by in situ method for use in perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(39): 16531-16537. [39] Yaoming Xiao,Gaoyi Han,Yunzhen Chang,et al. Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells[J]. Journal of Power Sources, 2015, 286: 118-123. [40] Peng Qin,Soichiro Tanaka,Seigo Ito,et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature Communications, 2014, 5 [41] Francesco Di Giacomo,Valerio Zardetto,Alessandra D'Epifanio,et al. Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates[J]. Advanced Energy Materials, 2015, 5(8): 1401808. [42] Yongzhen Wu,Xudong Yang,Han Chen,et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells[J]. Applied Physics Express, 2014, 7(5): 052301. [43] Qianqian Gao,Songwang Yang,Lei Lei,et al. An Effective TiO2 Blocking Layer for Perovskite Solar Cells with Enhanced Performance[J]. Chemistry Letters, 2015, 44(5): 624-626. [44] Sang Do Sung,Min Soo Kang,In Taek Choi,et al. 14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials[J]. Chemical Communications, 2014, 50(91): 14161-14163. [45] Thirumal Krishnamoorthy,Fu Kunwu,Pablo P. Boix,et al. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(18): 6305-6309. [46] Kwangseok Do,Hyeju Choi,Kimin Lim,et al. Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells[J]. Chemical Communications, 2014, 50(75): 10971-10974. [47] Peng Qin,Nicolas Tetreault,M. Ibrahim Dar,et al. A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2014, 5(2): 1400980. [48] Zonglong Zhu,Yang Bai,Harrison Ka Hin Lee,et al. Polyfluorene Derivatives are High-Performance Organic Hole-Transporting Materials for Inorganic−Organic Hybrid Perovskite Solar Cells[J]. Advanced Functional Materials, 2014, 24(46): 7357-7365. [49] Nianqing Fu,Chun Huang,Yan Liu,et al. Organic-free Anatase TiO2 Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells[J]. ACS Applied Material & Interfaces, 2015, 7(34): 19431-19438. [50] Hui-Seon Kim,Jin-Wook Lee,Natalia Yantara,et al. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer[J]. Nano Letters, 2013, 13(6): 2412-2417. [51] Jianhang Qiu,Yongcai Qiu,Keyou Yan,et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays[J]. Nanoscale, 2013, 5(8): 3245-3248. [52] Qinglong Jiang,Xia Sheng,Yingxuan Li,et al. Rutile TiO2 nanowire-based perovskite solar cells[J]. Chemical Communications, 2014, 50(94): 14720-14723. [53] Zhong D Cai B, Yang Z, Huang B, Miao S, Zhang W-H, Qiu J, Li C. An acid-free medium growth of rutile TiO2 nanorods arrays and their application in perovskite solar cells[J]. Journal of Materials Chemistry C, 2015, 3(4): 729-733. [54] Azhar Fakharuddin,Francesco Di Giacomo,Irfan Ahmed,et al. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells[J]. Journal of Power Sources, 2015, 283: 61-67. [55] Sawanta S. Mali,Chang Su Shim,Hui Kyung Park,et al. Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells[J]. Chemical Materials, 2015, 27(5): 1541-1551. [56] Cai B Zhong D, Wang X, et al. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11: 409-418. [57] Bing Cai,Dong Zhong,Zhou Yang,et al. An acid-free medium growth of rutile TiO2 nanorods arrays and their application in perovskite solar cells[J]. Journal of Materials Chemistry C, 2015, 3(4): 729-733. [58] Xianfeng Gao,Jianyang Li,Joel Baker,et al. Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films[J]. Chemical Communications, 2014, 50(48): 6368-6371. [59] Xiaoyan Wang,Zhen Li,Wenjing Xu,et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode[J]. Nano Energy, 2015, 11: 728-735. [60] Sabba Dharani,Hemant Kumar Mulmudi,Natalia Yantara,et al. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell[J]. Nanoscale, 2014, 6(3): 1675-1679. [61] Dong Zhong,Bing Cai,Xiuli Wang,et al. Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11: 409-418. [62] Yaoguang Rong,Zhiliang Ku,Anyi Mei,et al. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes[J]. The Journal of Physical Chemistry Letters, 2014, 5(12): 2160-2164. [63] M. Ibrahim Dar,F. Javier Ramos,Zhaosheng Xue,et al. Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic-Inorganic Lead Iodide Perovskite Solar Cell[J]. Chemistry of Materials, 2014, 26(16): 4675-4678. [64] Jin-Wook Lee,Seung Hee Lee,Hyun-Seok Ko,et al. Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI 3 perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 9179-9186. [65] Wu‐Qiang Wu,Fuzhi Huang,Dehong Chen,et al. Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole‐Blocking and Efficient Light‐Harvesting for High‐Performance Mesoscopic Perovskite Solar Cells[J]. Advanced Functinal Materials, 2015, 25: 3264-3272. [66] Hongxia Sun,Peng Ruan,Zhongqiu Bao,et al. Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells[J]. Solid State Sciences, 2015, 40: 60-66. [67] Khalid Mahmood,Bhabani Sankar Swain,Aram Amassian. Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Three-Dimensional TiO2 Electron Transporting Materials[J]. Advanced Materials, 2015, 27(18): 2859-2865. [68] Y. Z. Wu,X. D. Yang,H. Chen,et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells[J]. Applied Physics Express, 2014, 7(5): 4. |
[1] | MA Wu-wei, CHANG Qi-gang, SHI Xiong-fang, TONG Yan-bin, ZHOU Li, YE Bang-ce, LU Jian-jiang, ZHAO Jin-hu. Novel Electrochemical Sensor Based on Integration of Nanoporous Gold with Molecularly Imprinted Polymer for Detection of Arsenic Ion(III) [J]. Journal of Electrochemistry, 2020, 26(6): 900-910. |
[2] | XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites [J]. Journal of Electrochemistry, 2020, 26(6): 890-899. |
[3] | JIN Tong-zheng, YANG Yu-meng, FAN Sheng-hui, WEI Guo-ying, ZHANG Zhao. Synergistic Effect of Dissolving O2 and Wavelength on the Photo-Assisted Anodic Deposition of CeO2 Thin Films [J]. Journal of Electrochemistry, 2020, 26(6): 868-875. |
[4] | WANG Yi-jie, NIU Dong-fang, ZHANG Xin-sheng. Effect of 18-Crown-6 Additive on Chromium Electrodeposition in Ionic Liquid [J]. Journal of Electrochemistry, 2020, 26(6): 859-867. |
[5] | DUAN Ming-tao, MENG Yan-shuang, ZHANG Hong-shuai. Preparations and Sodium Storage Properties of Ni3S2@CNT Composite [J]. Journal of Electrochemistry, 2020, 26(6): 850-858. |
[6] | WANG Cun, ZHANG Wei-jiang, HE Teng-fei, LEI Bo, SHI You-jie, ZHENG Yao-dong, LUO Wei-lin, JIANG Fang-ming. Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling [J]. Journal of Electrochemistry, 2020, 26(6): 777-788. |
[7] | ZHANG Ze-Yang, SUN Lan, LIN Chang-Jian. Preparations and Photoelectrochemical Performances of RGO-TiO2 Nanotubes Arrays [J]. Journal of Electrochemistry, 2020, 26(6): 844-849. |
[8] | LOU Jing-yuan, YOU Dong-jiang, LI Xue-jing. Step-by-Step Modification of Graphite Felt Electrode for Vanadium Redox Flow Battery [J]. Journal of Electrochemistry, 2020, 26(6): 876-884. |
[9] | WU Kai. Preparation and Process Optimization of Cathode Materials for Lithium-Sulfur Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 825-833. |
[10] | YU Cheng-rong, ZHU Jian-guo, JIANG Cong-ying, GU Yu-chen, ZHOU Ye-xin, LI Zhuo-bin, WU Rong-min, ZHONG Zheng, GUAN Wan-bing. Numerical Simulations of Current and Temperature Distribution of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based on the Theory of Electric-Chemical-Thermal Coupling [J]. Journal of Electrochemistry, 2020, 26(6): 789-796. |
[11] | ZHU Chang, CHEN Wei, SONG Yan-fang, DONG Xiao, LI Gui-hua, WEI Wei, SUN Yu-han. Effect of Reaction Conditions on Cu⁃Catalyzed CO2 Electroreduction [J]. Journal of Electrochemistry, 2020, 26(6): 797-807. |
[12] | WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang. Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2020, 26(6): 815-824. |
[13] | Chen Pin-song, Hu Yi-tao, Zhang Xin-yi, Shen Pei-kang. Effect of Stereotaxically-Constructed Graphene on the Negative Electrode Performance of Lead-Acid Batteries [J]. Journal of Electrochemistry, 2020, 26(6): 834-843. |
[14] | YANG Na-chuan, WANG Yu, SHUAI Yi, CHEN Kang-hua. Preparations and Properties of Low Cost Sulfide Solid Electrolytes Li6-xPS5-xClx [J]. Journal of Electrochemistry, 2020, 26(6): 885-889. |
[15] | SHEN Jing, WANG Zi-ming, ZHENG Da-jiang, SONG Guang-ling. Pitting Behaviors of Passivated and Trans-Passivated 304 Stainless Steel [J]. Journal of Electrochemistry, 2020, 26(6): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||