Journal of Electrochemistry ›› 2016, Vol. 22 ›› Issue (3): 260-270.doi: 10.13208/j.electrochem.151247
• Special Issue for the Best Papers by the Award Winners in Electrochemistry • Previous Articles Next Articles
DUAN Shu-y1,2i, ZHANG Wei1,2, PIAO Jun-yu1,2, CAO An-min1*, WAN Li-jun1*
Received:
2016-02-01
Revised:
2016-02-28
Online:
2016-06-28
Published:
2016-03-07
Contact:
CAO An-min, WAN Li-jun
E-mail:anmin_cao@iccas.ac.cn; wanlijun@iccas.ac.cn
Supported by:
This work was supported by the major State Basic Research Program of China (973 program: 2013CB934000), the National Natural Science Foundation of China (Grant No. 21373238)
CLC Number:
DUAN Shu-yi, ZHANG Wei, PIAO Jun-yu, CAO An-min, WAN Li-jun. Uniform Nanoshells for Functional Materials:Constructions and Applications[J]. Journal of Electrochemistry, 2016, 22(3): 260-270.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.151247
[1] Dabbousi B O, RodriguezViejo J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites[J]. Journal of Physical Chemistry B, 1997, 101(46): 9463-9475. [2] Deheer W A. The physics of simple metal-clusters – experimental aspects and simple models[J]. Reviews of Modern Physics, 1993, 65(3): 611-676. [3] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society, 1997, 119(30): 7019-7029. [4] Lauhon L J, Gudiksen M S, Wang C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures[J]. Nature, 2002, 420(6911): 57-61. [5] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie-International Edition, 2004, 43(5): 597-601. [6] Zhang Q F, Dandeneau C S, Zhou X Y, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41): 4087-4108. [7] Jiang J, Li Y Y, Liu J P, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage [J]. Advanced Materials, 2012, 24(38): 5166-5180. [8] Lou X W, Archer L A, Yang Z C. Hollow micro-/nanostructures: synthesis and applications [J]. Advanced Materials, 2008, 20(21): 3987-4019. [9] Liu J, Manthiram A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells [J]. Chemistry of Materials, 2009, 21(8): 1695-1707. [10] Cho J, Kim Y W, Kim B, et al. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles [J]. Angewandte Chemie-International Edition, 2003, 42(14): 1618-1621. [11] Cho J. Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability [J]. Electrochimica Acta, 2003, 48(19): 2807-2811. [12] Wang J H, Wang Y, Guo Y Z, et al. Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials [J]. Journal of Materials Chemistry A, 2013, 1(15): 4879-4884. [13] Jung Y S, Lu P, Cavanagh A S, et al. Unexpected improved performance of ALD coated LiCoO2/graphite li-ion batteries [J]. Advanced Energy Materials, 2013, 3(2): 213-219. [14] Choi M, Ham G, Jin B S, et al. Ultra-thin Al2O3 coating on the acid- treated 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 electrode for Li-ion batteries [J]. Journal of Alloys and Compounds, 2014, 608: 110-117. [15] Cheng H M, Wang F M, Chu J P, et al. Enhanced cycleabity in lithium ion batteries: resulting from atomic layer deposition of Al2O3 or TiO2 on LiCoO2 electrodes [J]. Journal of Physical Chemistry C, 2012, 116(14): 7629-7637. [16] Scott I D, Jung Y S, Cavanagh A S, et al. Ultrathin coatings on nano-LiCoO2 for li-ion vehicular applications [J]. Nano Letters, 2011, 11(2): 414-418. [17] Gu M, Belharouak I, Zheng J, et al. Formation of the spinel phase in the layered composite cathode used in li-ion batteries [J]. ACS NANO, 2013, 7(1): 760-767. [18] Hwang B J, Chen C Y, Cheng M Y, et al. Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region [J]. Journal of Power Sources, 2010, 195(13): 4255-4265. [19] Zhang X F, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD [J]. Advanced Energy Materials, 2013, 3(10): 1299-1307. [20] Leskelä M, Ritala M. Atomic layer deposition chemistry: recent developments and future challenges [J]. Angewandte Chemie-International Edition, 2003, 42(45): 5548-5554. [21] Knez M, Nielsch K, Niinistö L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition [J]. Advanced Materials, 2007, 19(21): 3425-3438. [22] Puurunen R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process [J]. Journal of Applied Physics, 2005, 97(12): 121301-1-121301-52. [23] Marichy C, Bechelany M, Pinna N. Atomic layer deposition of nanostructured materials for energy and environmental applications [J]. Advanced Materials, 2012, 24(8): 1017-1032. [24] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72(11): 4847-4854. [25] Cao A M, Hu J S, Wan L J. Morphology control and shape evolution in 3D hierarchical superstructures [J]. Science China-Chemistry, 2012, 55(11): 2249-2256. [26] Noguchi T, Yamazaki I, Numataa T, et al. Effect of Bi oxide surface treatment on 5 V spinel LiNi0.5Mn1.5−xTixO4[J]. Journal of Power Sources, 2007, 174(2): 359-365. [27] Cho J, Kim Y J, Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J]. Chemistry of Materials, 2000, 12(12): 3788-3791. [28] Zhang W, Chi Z X, Mao W X, et al. One-nanometer-precision control of Al2O3 nanoshells through a solution-based Synthesis Route[J]. Angewandte Chemie-International Edition, 2014, 126(47): 12990–12994. [29] Sun Y K, Hong K J, Prakash J, et al. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures[J]. Electrochemistry Communications, 2002, 4(4): 344-348. [30] Sun Y K, Yoon C S, Oh I H. Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures [J]. Electrochimica Acta, 2003, 48(5): 503-506. [31] Alcantara R, Jaraba M, Lavela P, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes [J]. Journal of Electroanalytical Chemistry, 2004, 566(1): 187-192. [32] Mao W X, Zhang W, Chi Z X, et al. Core–shell structured Ce2S3@ZnO and its potential as a pigment [J]. Journal of Materials Chemistry A, 2015, 3(5): 2176-2180. [33] Stöber W, Fink A, Bohn E J, Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69. [34] Zhong A Z, Zou W, Mao W X, et al. A continuous etching process for highly-active Pd nanoclusters and their in situ stabilization [J]. RSC Advances, 2014, 4(45): 23637-23641. [35] Li C, Zhang H P, Fu L J. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta, 2006, 51(19): 3872-3883. [36] Kaden W E, Wu T P, Kunkel W A, et al. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces [J]. Science, 2009, 326(5954): 826-829. [37] Wang Z X, Liu L J, Chen L Q, et al. Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries[J]. Solid State Ionics, 2002, 148(3-4): 335-342. [38] Jung Y S, Cavanagh A S, Riley L A, et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe li-ion batteries [J]. Advanced Materials, 2010, 22(9): 2172-2176. [39] Cho J P, Kim T J, Park B W. The effect of a metal-oxide coating on the cycling behavior at 55°C in orthorhombic LiMnO2 cathode materials [J]. Journal of the Electrochemical Society, 2002, 149(3): A228-A292. [40] Jung Y S, Cavanagh A S, Dillon A C, et al. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition [J]. Journal of the Electrochemical Society, 2010, 157(1): A75-A81. [41] Zhang W, Yang L P, Wu Z X, et al. Controlled formation of uniform CeO2 nanoshells in a buffer solution [J]. Chemical Communications, 2016, 52: 1420-1423. [42] Lee J G. Kim B S, Cho J P, et al. Effect of AlPO4-nanoparticle coating concentration on high-cutoff-voltage electrochemical eperformances in LiCoO2[J]. Journal of the Electrochemical Society, 2004, 151(6): A801-A805. [43] Yang F L, Zhang W, Chi Z X, et al. Controlled formation of core–shell structures with uniform AlPO4 nanoshells [J]. Chemical Communications, 2015, 51(14): 2943-2945. [44] Lu Y C, Mansour A N, Yabuuchi N, et al. Probing the origin of enhanced stability of “AlPO4” nanoparticle coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies [J]. Chemistry of Materials, 2009, 21(19): 4408-4424. [45] Lee K T, Jeong S Y, Cho J P. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1161-1170. [46] Lee H S, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426-430. [47] Postma A, Yan Y, Wang Y J, et al. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules [J]. Chemistry of Materials, 2009, 21(14): 3042-3044. [48] Kang S M, Rho J S, Choi I S, et al. Norepinephrine: Material-independent, multifunctional surface modification reagent [J]. Journal of the American Chemical Society, 2009, 131(37): 13224-13225. [49] Chi Z X, Zhang W, Cheng F Q, et al. Optimizing the carbon coating on LiFePO4 for improved battery performance [J]. RSC Advances, 2014, 4(15): 7795-7798. [50] Liu J, Qiao S Z, Liu H, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres [J]. Angewandte Chemie-International Edition, 2011, 50(26): 5947-5951. [51] Liu J, Yang T Y, Wang D W, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres [J]. Nature Communications, 2013, 4: 2798. [52] Chi Z X, Zhang W, Wang X S, et al. Accurate surface control of core–shell structured LiMn0.5Fe0.5PO4@C for improved battery performance [J]. Journal of Materials Chemistry A, 2014, 2(41): 17359-17365. |
[1] | Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin. Effect of Aluminum Alloy Surface Modification on Adhesion of the Modified Polyurethane Coating and Its Corrosion Protective Performance [J]. Journal of Electrochemistry, 2021, 27(6): 624-636. |
[2] | Li Zhou, Lie Wu, Zhao-Ming Xue. Preparation and Characterization of Thermoplastic Polyurethane-Based Polymer Electrolyte [J]. Journal of Electrochemistry, 2021, 27(4): 439-448. |
[3] | Xue-Qian Zhang, Zhou-Guang Lu, Wei-Wei Huang. Research Progress on Transition State of Organic Electrode Materials [J]. Journal of Electrochemistry, 2021, 27(1): 1-13. |
[4] | WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang. Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction [J]. Journal of Electrochemistry, 2020, 26(6): 815-824. |
[5] | CHEN Jia-hui, ZHONG Xiao-bin, HE Chao, WANG Xiao-xiao, XU Qing-chi, LI Jian-feng. Synthesis and Raman Study of Hollow Core-Shell Ni1.2Co0.8P@N-C as an Anode Material for Sodium-Ion Batteries [J]. Journal of Electrochemistry, 2020, 26(3): 328-337. |
[6] | YAO Shuo, HUANG Tai-zhong, HAIDER Rizwan, FANG Heng-yi, YU Jie-mei, JIANG Zhan-kun, LIANG Dong, SUN Yue, YUAN Xian-xia. NiO@rGO Supported Palladium and Silver Nanoparticles as Electrocatalysts for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2020, 26(2): 270-280. |
[7] | ZHAO Tuo, LUO Er-gui, WANG Xian, GE Jun-jie, LIU Chang-peng, XING Wei. Challenges in the Activity and Stability of Pt-Based Catalysts toward ORR [J]. Journal of Electrochemistry, 2020, 26(1): 84-95. |
[8] | LEI Wen, XIAO Wei-ping, WANG De-li. Recent Progress in Copper-Based Catalysts for Electrochemical CO2 Reduction [J]. Journal of Electrochemistry, 2019, 25(4): 455-466. |
[9] | GU Yue-ru, ZHAO Wei-min, SU Chang-hu, LUO Chuan-jun, ZHANG Zhong-ru, XUE Xu-jin,YANG Yong. Research Progresses in Improvement for Low Temperature Performance of Lithium-Ion Batteries [J]. Journal of Electrochemistry, 2018, 24(5): 488-496. |
[10] | JIANG Heng, FAN Jing-min, ZHENG Ming-sen, DONG Quan-feng. Co3(HCOO)6@rGO as a Promising Anode for Lithium Ion Batteries [J]. Journal of Electrochemistry, 2018, 24(3): 207-215. |
[11] | Qinglong Tan, Haining Wang, Shanfu Lu, Dawei Liang, Chunxiao Wu, Yan Xiang. Effects of surface modification modes on proton-over-vanadium ion selectivity of Nafion®membrane for application in vanadium redox flow battery [J]. Journal of Electrochemistry, 2017, 23(4): 409-419. |
[12] | ZHAO Qing, ZHANG Qian, FAN Jing-min, ZHENG Ming-sen, DONG Quan-feng. Tetrabutylammonium Hexafluorophosphate as Flame Retardant Additive for Lithium Ion Batteries [J]. Journal of Electrochemistry, 2017, 23(4): 435-440. |
[13] | Hisham Hamzah,Guy Denuault,Philip Bartlett,Aleksandra Pinczewska,Jeremy Kilburn. Electrografting of Mono-N-Boc-Ethylenediamine from an Acetonitrile/Aqueous NaHCO3 Mixture [J]. Journal of Electrochemistry, 2017, 23(2): 130-140. |
[14] | CHEN Ding-qiong, YANG Yang, LI Qiu-li, ZHAO Jin-bao. Research Progress of Si-based Anode Materials for Lithium-ion Batteries [J]. Journal of Electrochemistry, 2016, 22(5): 489-498. |
[15] | ZHONG Gui-ming, LIU Zi-geng, WANG Da-wei, LI Qi, FU Ri-qiang, Yang Yong. Recent Progress in Solid-state NMR Study of Electrode/electrolyte Materials for Lithium/sodium Ion Batteries [J]. Journal of Electrochemistry, 2016, 22(3): 231-243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||