Journal of Electrochemistry ›› 2014, Vol. 20 ›› Issue (3): 219-233.doi: 10.13208/j.electrochem.130884
• Special Issue on Fundamental Electrochemistry(Editor: Professor CHEN Sheng-li, Wuhan University) • Previous Articles Next Articles
ZHU Cheng-zhou1,2, HAN Lei1,2, DONG Shao-jun1,2*
Received:
2013-08-27
Revised:
2013-11-01
Online:
2014-06-28
Published:
2013-11-06
Contact:
DONG Shao-jun
E-mail:dongsj@ciac.jl.cn
Supported by:
This work was supported by the National Natural Science Foundation of China (No. 21075116) and 973 Project (Nos. 2011CB911002 and 2010CB933603)
CLC Number:
ZHU Cheng-zhou, HAN Lei, DONG Shao-jun*. Novel Electrochemical Interfaces Based on Functional Nanomaterials and Their Related Applications[J]. Journal of Electrochemistry, 2014, 20(3): 219-233.
Add to citation manager EndNote|Ris|BibTeX
URL: http://electrochem.xmu.edu.cn/EN/10.13208/j.electrochem.130884
[1] Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?[J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103.[2] Guo S J, Wang E K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264.[3] Guo S J, Dong S J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5): 2644-2672.[4] Han L, Bai L, Zhu C Z, et al. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode[J]. Chemical Communications, 2012, 48(49): 6103-6105.[5] Wen D, Xu X L, Dong S J. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks[J]. Energy & Environmental Science, 2011, 4(4): 1358-1363.[6] Zhu C Z, Guo S Z, Wang P, et al. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets[J]. Chemical Communications, 2010, 46(38): 7148-7150.[7] Zhu C Z, Zhai J F, Wen D, et al. Graphene oxide/polypyrrole nanocomposites: One-step electrochemical doping, coating and synergistic effect for energy storage[J]. Journal of Materials Chemistry, 2012, 22(13): 6300-6306.[8] Wen D, Guo S J, Dong S J, et al. Ultrathin Pd nanowire as a highly active electrode material for sensitive and selective detection of ascorbic acid[J]. Biosensors & Bioelectronics, 2010, 26(3): 1056-1061.[9] Wang L, Zhu C Z, Han L, et al. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene[J]. Chemical Communications, 2011, 47(27): 7794-7796.[10] Li B L, Du Y, Wei H, et al. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules[J]. Chemical Communications, 2007, (36): 3780-3782.[11] Zhu C Z, Fang Y X, Wen D, et al. One-pot synthesis of functional two-dimensional graphene/SnO2 composite nanosheets as a building block for self-assembly and an enhancing nanomaterial for biosensing[J]. Journal of Materials Chemistry, 2011, 21(42): 16911-16917.[12] Lei J P, Ju H X. Signal amplification using functional nanomaterials for biosensing[J]. Chemical Society Reviews, 2012, 41(6): 2122-2134.[13] Guo S J, Dong S J. Biomolecule-nanoparticle hybrids for electrochemical biosensors[J]. Trac-Trends in Analytical Chemistry, 2009, 28(1): 96-109.[14] Zhou M, Dong S J. Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors[J]. Accounts of Chemical Research, 2011, 44(11): 1232-1243.[15] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.[16] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8): 3157-3180.[17] Zhu C Z, Dong S J. Energetic graphene-based electrochemical analytical devices in nucleic acid, protein and cancer diagnostics and detection[J]. Electroanalysis, 2014, 26(1): 14-29.[18] Guo S J, Dong S J. Graphene and its derivative-based sensing materials for analytical devices[J]. Journal of Materials Chemistry, 2011, 21(46): 18503-18516.[19] Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Analytical Chemistry, 2009, 81(14): 5603-5613.[20] Zhu C Z, Guo S J, Fang Y X, et al. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets[J]. ACS Nano, 2010, 4(4): 2429-2437.[21] Kuila T, Bose S, Khanra P, et al. Recent advances in graphene-based biosensors[J]. Biosensors & Bioelectronics, 2011, 26(12): 4637-4648.[22] Fang Y X, Wang E K. Electrochemical biosensors on platforms of graphene[J]. Chemical Communications, 2013, 49(83): 9526-9539.[23] Guo Y J, Li J, Dong S J. Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose[J]. Sensors and Actuators B-Chemical, 2011, 160(1): 295-300.[24] Guo Y J, Guo S J, Li J, et al. Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim[J]. Talanta, 2011, 84(1): 60-64.[25] Guo Y J, Guo S J, Ren J T, et al. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance[J]. ACS Nano, 2010, 4(7): 4001-4010.[26] Zhu C Z, Guo S J, Zhai Y M, et al. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker[J]. Langmuir, 2010, 26(10): 7614-7618.[27] Guo S J, Wen D, Zhai Y M, et al. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene[J]. Biosensors & Bioelectronics, 2011, 26(8): 3475-3481.[28] Russell J, Kral P. Configuration-sensitive molecular sensing on doped graphene sheets[J]. Nano Research, 2010, 3(7): 472-480.[29] Shao Y Y, Zhang S, Engelhard M H, et al. Nitrogen-doped graphene and its electrochemical applications[J]. Journal of Materials Chemistry, 2010, 20(35): 7491-7496.[30] Wang Y, Shao Y Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. Acs Nano, 2010, 4(4): 1790-1798.[31] Wu P, Cai Z W, Gao Y, et al. Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells[J]. Chemical Communications, 2011, 47(40): 11327-11329.[32] Fang Y X, Guo S J, Zhu C Z, et al. Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing[J]. Langmuir, 2010, 26(13): 11277-11282.[33] Du Y, Guo S J, Dong S J, et al. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids[J]. Biomaterials, 2011, 32(33): 8584-8592.[34] Du Y, Guo S J, Qin H X, et al. Target-induced conjunction of split aptamer as new chiral selector for oligopeptide on graphene-mesoporous silica-gold nanoparticle hybrids modified sensing platform[J]. Chemical Communications, 2012, 48(6): 799-801.[35] Guo S J, Du Y, Yang X, et al. Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres[J]. Analytical Chemistry, 2011, 83(20): 8035-8040.[36] Guo S J, Wen D, Zhai Y M, et al. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing[J]. ACS Nano, 2010, 4(7): 3959-3968.[37] Cao X H, Zeng Z Y, Shi W H, et al. Three-dimensional graphene network composites for detection of hydrogen peroxide[J]. Small, 2013, 9(9/10): 1703-1707.[38] Dong X C, Xu H, Wang X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213.[39] Bai L, Wen D, Yin J Y, et al. Carbon nanotubes-ionic liquid nanocomposites sensing platform for NADH oxidation and oxygen, glucose detection in blood[J]. Talanta, 2012, 91: 110-115.[40] Guo S J, Li J, Ren W, et al. Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures: Facile preparation and use as enhanced materials for electrochemical devices and SERS[J]. Chemistry of Materials. 2009, 21(11): 2247-2257.[41] Zhai J F, Zhai Y M, Wen D, et al. Prussian blue/multiwalled carbon nanotube hybrids: Synthesis, assembly and electrochemical behavior[J]. Electroanalysis, 2009, 21(20): 2207-2212.[42] Guo Y J, Guo S J, Fang Y X, et al. Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan[J]. Electrochimica Acta, 2010, 55(12): 3927-3931.[43] Deng L, Wang Y Z, Shang L, et al. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer[J]. Biosensors & Bioelectronics, 2008, 24(4): 951-957.[44] Fang Y X, Guo S J, Zhu C Z, et al. One-dimensional carbon nanotube/SnO2/noble metal nanoparticle hybrid nanostructure: Synthesis, characterization, and electrochemical sensing[J]. Chemistry-An Asian Journal, 2010, 5(8): 1838-1845.[45] Deng L, Chen C G, Zhou M, et al. Integrated self-powered microchip biosensor for endogenous biological cyanide[J]. Analytical Chemistry, 2010, 82(10): 4283-4287.[46] Wen D, Deng L, Guo S J, et al. Self-powered sensor for trace Hg2+ detection[J]. Analytical Chemistry, 2011, 83(10): 3968-3972.[47] Zhang L L, Zhou M, Dong S J. A self-powered acetaldehyde sensor based on biofuel cell[J]. Analytical Chemistry, 2012, 84(23): 10345-10349.[48] Zhou M, Shang L, Li B L, et al. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors[J]. Biosensors & Bioelectronics, 2008, 24(3): 442-447.[49] Zhou M, Shang L, Li B L, et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications, 2008, 10(6): 859-863.[50] Wang Y J, Wilkinson D P, Zhang J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chemical Reviews, 2011, 111(12): 7625-7651.[51] Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells[J]. Chemical Reviews, 2009, 109(9): 4183-4206.[52] Zhang L, Niu W X, Xu G B. Synthesis and applications of noble metal nanocrystals with high-energy facets[J]. Nano Today, 2012, 7(6): 586-605.[53] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.[54] Lu C L, Prasad K S, Wu H L, et al. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity[J]. Journal of the American Chemical Society, 2010, 132(41): 14546-14553.[55] Zhu C Z, Guo S J, Dong S J. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium[J]. Chemistry-A European Journal, 2013, 19(3): 1104-1111.[56] Guo S J, Li J, Dong S J, et al. Three-dimensional Pt-on-Au bimetallic dendritic nanoparticle: One-step, high-yield synthesis and its bifunctional plasmonic and catalytic properties[J]. Journal of Physical Chemistry C, 2010, 114(36): 15337-15342.[57] Fang Y X, Guo S J, Zhu C Z, et al. Twenty second synthesis of Pd nanourchins with high electrochemical activity through an electrochemical route[J]. Langmuir, 2010, 26(23): 17816-17820.[58] Guo S J, Dong S J. Metal nanomaterial-based self-assembly: Development, electrochemical sensing and SERS applications[J]. Journal of Materials Chemistry, 2011, 21(42): 16704-16716.[59] Wang L, Yamauchi Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles[J]. Journal of the American Chemical Society, 2009, 131(26): 9152-9153.[60] Zhu C Z, Guo S J, Dong S J. PdM(M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules[J]. Advanced Materials, 2012, 24(17): 2326-2331.[61] Zhu C Z, Guo S J, Dong S J. Facile synthesis of trimetallic AuPtPd alloy nanowires and their catalysis for ethanol electrooxidation[J]. Journal of Materials Chemistry, 2012, 22(30): 14851-14855.[62] Guo S J, Dong S J, Wang E K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation[J]. Energy & Environmental Science, 2010, 3(9): 1307-1310.[63] Guo S J, Dong S J, Wang E. Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: Nanodendritic structure for enhanced electrocatalytic activity[J]. Chemical Communications, 2010, 46(11): 1869-1871.[64] Chen X M, Wu G H, Chen J M, et al. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide[J]. Journal of the American Chemical Society, 2011, 133(11): 3693-3695.[65] Wu B H, Kuang Y J, Zhang X H, et al. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications[J]. Nano Today, 2011, 6(1): 75-90.[66] Kou R R, Shao Y Y, Mei D H, et al. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points[J]. Journal of the American Chemical Society, 2011, 133(8): 2541-2547.[67] Guo S J, Dong S J, Wang E K. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker[J]. Advanced Materials, 2010, 22(11): 1269-1272.[68] Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. ACS Nano, 2010, 4(1): 547-555.[69] Guo S J, Dong S J, Wang E K. Polyaniline/Pt hybrid nanofibers: High-efficiency nanoelectrocatalysts for electrochemical devices[J]. Small, 2009, 5(16): 1869-1876.[70] Zhu C Z, Dong S J. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction[J]. Nanoscale, 2013, 5(5): 1753-1767.[71] Guo S J, Zhang S., Sun S H. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013, 52(33): 8526-8544.[72] Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566.[73] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.[74] Yang S B, Zhi L J, Tang K, et al. Efficient synthesis of heteroatom(N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Advanced Functional Materials, 2012, 22(17): 3634-3640.[75] Ji H Q, Li M G, Wang Y L, et al. Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity[J]. Electrochemistry Communications, 2012, 24: 17-20.[76] Sun C L, Lee H H., Yang J M., et al. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites[J]. Biosensors & Bioelectronics, 2011, 26(8): 3450-3455.[77] Kang Y J, Ye X C, Chen J, et al. Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions[J]. Journal of the American Chemical Society, 2013, 135(1): 42-45.[78] Wang C, Chi M F, Li D G, et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J]. Journal of the American Chemical Society, 2011, 133(36): 14396-14403.[79] Jiang S, Zhu C Z, Dong S J. Cobalt and nitrogen-cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity[J]. Journal of Materials Chemistry A, 2013, 1(11): 3593-3599.[80] Zhu C Z, Zhai J F, Dong S J. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chemical Communications, 2012, 48(75): 9367-9369.[81] Deng L, Zhou M, Liu C, et al. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells[J]. Talanta, 2010, 81(1/2): 444-448.[82] Tomasulo M, Giordani S, Raymo F M. Fluorescence modulation in polymer bilayers containing fluorescent and photochromic dopants[J]. Advanced Functional Materials, 2005, 15(5): 787-794.[83] Qin B, Chen H Y, Liang H, et al. Reversible photoswitchable fluorescence in thin films of inorganic nanoparticle and polyoxometalate assemblies[J]. Journal of the American Chemical Society, 2010, 132(9): 2886-2888.[84] Browne W R, Pollard M M, de Lange B, et al. Reversible three-state switching of luminescence: A new twist to electro- and photochromic behavior[J]. Journal of the American Chemical Society, 2006, 128(38): 12412-12413.[85] Jin L H, Fang Y X, Wen D, et al. Reversibly electroswitched quantum dot luminescence in aqueous solution[J]. Acs Nano, 2011, 5(6): 5249-5253.[86] Kim Y, Kim E, Clavier G, et al. New tetrazine-based fluoroelectrochromic window; modulation of the fluorescence through applied potential[J]. Chemical Communications, 2006, 34: 3612-3614.[87] Wang B, Yin Z D, Bi L H, et al. An electroswitchable fluorescence thin-film based on a luminescent polyoxometalate cluster[J]. Chemical Communication, 2010, 46(38): 7163-7165.[88] Jin L H, Shang L, Zhai J F, et al. Fluorescence spectroelectrochemistry of multilayer film assembled CdTe quantum dots controlled by applied potential in aqueous solution[J]. Journal of Physical Chemistry C, 2010, 114(2): 803-807.[89] Gu H X, Bi L H, Fu Y, et al. Multistate electrically controlled photoluminescence switching[J]. Chemical Science, 2013, 4(12): 4371-4377.[90] Zhai Y L, Jin L H, Zhu C Z, et al. Reversible electroswitchable luminescence in thin films of organic-inorganic hybrid assemblies[J]. Nanoscale, 2012, 4(24): 7676-7681.[91] Jin L H, Fang Y X, Hu P, et al. Polyoxometalate-based inorganic-organic hybrid film structure with reversible electroswitchable fluorescence property[J]. Chemical Communications, 2012, 48(15): 2101-2103.[92] Jin L H, Fang Y X, Shang L, et al. Gold nanocluster-based electrochemically controlled fluorescence switch surface with prussian blue as the electrical signal receptor[J]. Chemical Communications, 2013, 49(3): 243-245.[93] Zhai Y L, Zhu Z J, Zhu C Z, et al. Reversible photo-chem-electrotriggered three-state luminescence switching based on core-shell nanostructures[J]. Nanoscale, 2013, 5(10): 4344-4350.[94] Zhai Y L, Zhu C Z, Ren J T, et al. Multifunctional polyoxometalates-modified upconversion nanoparticles: Integration of electrochromic devices and antioxidants detection[J]. Chemical Communications, 2013, 49(24): 2400-2402.[95] Bai L, Jin L H, Han L, et al. Self-powered fluorescence controlled switch systems based on biofuel cells[J]. Energy & Environmental Science, 2013, 6(10): 3015-3021. |
[1] | Long Huang, Hai-Chao Xu, Bi Jing, Qiu-Xia Li, Wei Yi, Shi-Gang Sun. Progress of Pt-Based Catalysts in Proton-Exchange Membrane Fuel Cells: A Review [J]. Journal of Electrochemistry, 2022, 28(1): 2108061-. |
[2] | Zhi-Peng Wu, Chuan-Jian Zhong. Pd-Based Electrocatalysts for Oxygen Reduction and Ethanol Oxidation Reactions: Some Recent Insights into Structures and Mechanisms [J]. Journal of Electrochemistry, 2021, 27(2): 144-156. |
[3] | Zhi-Hua Zhuang, Wei Chen. Application of Atomically Precise Metal Nanoclusters in Electrocatalysis [J]. Journal of Electrochemistry, 2021, 27(2): 125-143. |
[4] | Shou-Xun Hu, Liang Li, Jun-Hao Yang, Liu-Qiang Li, Zhi-Hao Jin. Preparations and Electrocatalytic Ethanol Properties of Palladium Intercalated Hydrotalcite [J]. Journal of Electrochemistry, 2021, 27(1): 100-107. |
[5] | ZHANG Yan-feng, XIAO Fei, CHEN Guang-yu, SHAO Min-hua. Fuel Cell Performance of Non-Precious Metal Based Electrocatalysts [J]. Journal of Electrochemistry, 2020, 26(4): 563-572. |
[6] | CHEN Hui-mei, ZHU Shang-qian, HUANG Jia-le, SHAO Min-hua. Palladium Adatoms on Gold Nanoparticles as Electrocatalysts for Ethanol Electro-Oxidation in Alkaline Solutions [J]. Journal of Electrochemistry, 2018, 24(6): 740-747. |
[7] | CHEN He-mu, QIU Chen-xi, CONG Yuan-yuan, LIU Hui-yuan. Acid Treated Carbon as Anodic Electrocatalysts toward Direct Ascorbic Acid Alkaline Membrane Fuel Cells [J]. Journal of Electrochemistry, 2018, 24(6): 748-756. |
[8] | LI Jing, FENG Xin, WEI Zi-dong. Recent Progress in Pt-Based Catalysts for Oxygen Reduction Reaction [J]. Journal of Electrochemistry, 2018, 24(6): 589-601. |
[9] | CAO Long-sheng, WAN Lei, SHAO Zhi-gang, YU Hong-mei, HOU Ming, YI Bao-lian. Morphological Control of PtCu2 Octahedron and Oxygen Reduction Electrocatalytic Performance of PtCu for Fuel Cell [J]. Journal of Electrochemistry, 2018, 24(6): 697-706. |
[10] | CHEN Xing-xing. Preparation of Nanoprobes and Their Possible Applications in Nanoscale Scanning Electrochemical Microscopy for Studying Electrocatalytic Oxygen and Hydrogen Reactions [J]. Journal of Electrochemistry, 2018, 24(5): 497-510. |
[11] | DONG Peng-fei, LI Na, ZHAO Hai-yan, CUI Min, ZHANG Cong, REN Ju-jie,JI Xue-ping. Synthesis of Keggin Polyoxometalates Modified Carbon Paste Electrode as A Sensor for Dopamine Detection [J]. Journal of Electrochemistry, 2018, 24(5): 555-562. |
[12] | DENG Xin, CHEN Heng-quan, HU Ye,HE Qing-gang. Recent Progress for Fe-N-C Electrocatalysts in Alkaline Fuel Cells [J]. Journal of Electrochemistry, 2018, 24(3): 235-245. |
[13] | Yongan Tang, Lin Dai, Shouzhong Zou. Comparison of Oxygen Reduction Reaction Activity of Pt-Alloy Nanocubes [J]. Journal of Electrochemistry, 2017, 23(2): 199-206. |
[14] | SHI Kun-ming, GUO Jian-wei, WANG Jia. The Study of Dynamical Electrochemical Impedance Spectroscopy for Oxygen Reduction Reaction on Pt/C Catalyst [J]. Journal of Electrochemistry, 2016, 22(5): 542-548. |
[15] | JIANG Shang-feng, YI Bao-lian. The Progress of Order-Structured Membrane Electrode Assembly [J]. Journal of Electrochemistry, 2016, 22(3): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||