欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

全文下载排行

    一年内发表文章 | 两年内 | 三年内 | 全部 | 最近1个月下载排行 | 最近1年下载排行

    当前位置: 最近1个月下载排行
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 钒基电极材料研究进展
    孙梦雷, 张达奇, 冯金奎, 倪江锋
    电化学(中英文)    2019, 25 (1): 45-54.   DOI: 10.13208/j.electrochem.180541
    摘要1681)      PDF(pc) (1124KB)(52285)    收藏
    发展低成本、高性能、高安全的锂离子、钠离子电池是解决能源储存问题的一个重要途径. 由于具有丰富的化学价态,开放式的化学结构和较高的理论容量,钒基材料是一种非常有潜力的锂离子电池、钠离子电池电极材料. 在过去的几年中,钒基电极材料如钒的氧化物、硫化物、磷酸盐等在电池中的应用取得了长足的进展,有必要对相关的研究进展作一个总结. 本文介绍了钒基电极材料的近期研究进展,重点总结了钒基电极材料应用所面临的离子扩散系数低、结构稳定性差等科学问题,并从活性材料本身的改性以及与外部材料复合作用两个角度重点分析了应对这些问题所采用的策略. 一方面,通过对钒元素的化合价态进行调控来提高材料的电导性,并采用异原子掺杂来加快离子扩散系数. 另一方面,借助同/异种纳米结构间的耦合作用增强材料的结构稳定性. 基于基底的骨架作用,实现三维有序阵列结构电极的制备,进而促进材料能量密度与功率密度的共同提升. 最后,讨论了钒基材料进一步发展所面临的挑战,希望能够为将来相关电极材料的研究提供一些参考.
    参考文献 | 相关文章 | 多维度评价
    2. 固态锂硫电池研究进展
    罗宇, 马如琴, 龚正良, 杨勇
    电化学(中英文)    2023, 29 (3): 2217007-.   DOI: 10.13208/j.electrochem.2217007
    摘要965)   HTML433)    PDF(pc) (4674KB)(4165)    收藏

    固态锂硫电池具有高能量密度和高安全性的潜在优势,被认为是最有前景的下一代储能体系之一。虽然固态电解质的应用有效地抑制了传统锂硫电池存在的“穿梭效应”和自放电现象,固态锂硫电池仍面临着多相离子/电子输运、电极/电解质界面稳定性、化学-机械稳定性、电极结构稳定性和锂枝晶生长等关键问题亟待解决。针对以上问题,本综述对近年来固态电解质、硫基复合正极、锂金属及锂合金负极以及电极/电解质界面的研究进行了详细的论述。作为固态锂硫电池的重要组成部分,固态电解质近年来受到了研究者们的广泛关注。本文首先对在锂硫电池中得到广泛应用的聚合物基、氧化物基、硫化物基固态电解质的种类和性质进行了概述,并对其在固态锂硫电池中的最新应用进行了系统的总结。在此基础上,对以单质硫、硫化锂、金属硫化物为活性物质的复合硫正极、锂金属及锂合金负极的反应机理以及面临的挑战进行了归纳和比较,对其解决策略进行了总结和分析。此外,对制约固态锂硫电池性能的电极/电解质界面离子/电子输运以及界面相容性问题及其改性策略进行了系统的阐述。最后,对固态锂硫电池的未来发展进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. CO 2高效资源化利用的高温熔盐电化学技术研究
    邓博文, 尹华意, 汪的华
    电化学(中英文)    2020, 26 (5): 628-638.   DOI: 10.13208/j.electrochem.200653
    摘要610)   HTML4)    PDF(pc) (111897KB)(2193)    收藏

    高温熔融盐具有CO2吸收容量大、电化学窗口宽、高温下反应动力学快等特点,是利用清洁电能大规模捕集和资源化利用CO2颇具实用化潜力的电解液体系. 本文主要介绍作者课题组近十年关于高温熔盐CO2捕集与电化学资源化转化(MSCC-ET)技术的相关研究工作,包括熔融盐电解质对CO2的吸收、阴极过程动力学、电解条件对产物的影响、析氧阳极、电解过程能量效率和CO2捕获潜力,并展望了MSCC-ET技术的发展前景.

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 结合光学成像技术研究单颗粒碰撞电化学
    孙琳琳, 王 伟, 陈洪渊
    电化学(中英文)    2019, 25 (3): 386-399.   DOI: 10.13208/j.electrochem.181061
    摘要1550)      PDF(pc) (45564KB)(1412)    收藏

    近年来,单颗粒碰撞技术在纳米电化学领域受到广泛关注. 该技术通常控制超微电极处于某一电位,检测单个纳米颗粒随机碰撞到电极表面后产生的瞬时电流. 通过分析电流信号,可以研究单个纳米颗粒的性质. 尽管该技术可以检测单个纳米颗粒的电化学或电催化电流,但是传统的单颗粒碰撞技术缺乏空间分辨率,难以识别和表征特定的纳米颗粒. 因此,结合光学成像技术研究单颗粒碰撞电化学来补充电化学技术缺失的空间信息已成为一种趋势. 本文首先简要综述了单颗粒碰撞技术的三种检测原理,主要介绍了近年来单颗粒碰撞技术与荧光显微镜、表面等离激元共振显微镜、全息显微镜和电致化学发光相结合的研究进展,最后展望了单颗粒碰撞技术未来的发展趋势.

    相关文章 | 多维度评价
    5. 电化学生物传感器在污水分析及污水流行病学中的应用进展
    潘昱韡, 毛 康, Tuerk Franziska, 杨竹根
    电化学(中英文)    2019, 25 (3): 363-373.   DOI: 10.13208/j.electrochem.181050
    摘要1119)      PDF(pc) (15848KB)(850)    收藏

    近年来,污水流行病学(wastewater-based epidemiology, WBE)已被证明是用来监测社区毒品滥用和公共健康的一种有效评估方法,该方法通过定量分析指定社区污水回收站中污水的药物残留或者代谢物来反推社区中人们对毒品的消耗量并结合指定社区的人口数量对其进行归一化处理. 电化学生物传感器具有响应时间快、成本低、分析样品需求量小、数据分辨率高以及能够现场快速测试等特点,已被广泛应用于疾病快速诊断、环境污染监测、食品安全以及毒品检测等领域. 液相色谱-质谱联用是分析污水中的毒品及其代谢物的主要方法,但随着传感技术尤其是电化学传感器近来的快速发展,也开始被用于研究污水传染病学并可实现现场快速测量. 本文综述了电化学生物传感器在污水中无机污染物(如重金属)、有机污染物(如农药、毒品)、生物分子(如 DNA)以及细菌等微生物分析中的最新进展,同时还论述了目前电化学传感器技术在污水流行病学领域的应用和未来所面临的主要挑战.

    相关文章 | 多维度评价
    6. 电极形状对锂离子电池电极锂化过程的影响
    孙士玮, 聂建军, 宋亦诚
    电化学(中英文)    2022, 28 (4): 2105061-.   DOI: 10.13208/j.electrochem.210506
    摘要810)   HTML48)    PDF(pc) (4449KB)(1526)    收藏

    本文研究了锂离子电池电极形状对电极锂化过程的影响,借助实验观测和数值模拟揭示锂离子固相、液相扩散和嵌锂电化学反应的相互竞争关系。在实验中,设计了基于CCD相机的电极锂化过程原位观测实验方案,对三种不同形状(圆形、方形、三角形)电极的锂化过程进行实时观测,发现各种电极均存在锂化不均匀的现象,电极边缘锂化程度较高,而电极中心区域锂化程度较低。电极尖端曲率较大的位置更容易获得较多的锂离子嵌入,快速达到饱和,甚至发生锂枝晶沉积。数值模拟则揭示该锂化不均匀现象是电池内电场分布、电解液中锂离子浓度分布和活性材料中锂浓度分布综合影响的结果。电极形状的变化导致电解液内电场分布不均匀,使电解液中锂离子分布不均匀,最终出现锂化不均匀现象。本文揭示了电极形状对电极锂化过程的影响,增加了对锂离子电池锂离子输运、嵌入和扩散的竞争关系的理解,可为锂离子电池的设计和应用提供指导。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 电极过程动力学反应速率常数测量的若干方法
    韩联欢, 郭佳瑶, 崔苗苗
    电化学(中英文)    2024, 30 (2): 2303241-.   DOI: 10.13208/j.electrochem.2303241
    摘要304)   HTML12)    PDF(pc) (1221KB)(829)    收藏

    电子转移反应的标准反应速率常数是电化学反应的“本征”动力学性质,也是电极过程动力学研究的重要内容之一,对于电极反应的机理和路径的理解以及电催化剂和电池材料等的筛选和理性设计均具有重要意义。本文将主要介绍电化学反应速率常数测定的实验方法,包括极化曲线、旋转圆盘、超微电极、扫描电化学显微镜、电化学阻抗谱、电流阶跃、电势阶跃以及循环伏安等方法,以期对开展电极过程动力学研究的相关研究人员和学生有所裨益。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 拉曼光谱在锂离子电池研究中的应用
    赵亮, 胡勇胜, 李泓, 王兆翔, 徐红星, 黄学杰, 陈立泉
    电化学(中英文)    2011, 17 (1): 12-23.   DOI: 10.61558/2993-074X.2814
    摘要6694)      PDF(pc) (5621KB)(11878)    收藏
    综述拉曼光谱(Raman spectroscopy)在锂离子电池碳负极材料、尖晶石LiMn2O4和LiFePO4正极材料、聚合物和室温熔盐电解质以及电极/电解质界面膜研究中的应用,分析了非原位拉曼测试手段与原位拉曼测试手段的优缺点,展望了这一领域目前有待解决的问题和可能应用的新技术.
    参考文献 | 相关文章 | 多维度评价
    被引次数: Baidu(7)
    9. 钠离子电池硬碳基负极材料的研究进展
    殷秀平, 赵玉峰, 张久俊
    电化学(中英文)    2023, 29 (10): 2204301-.   DOI: 10.13208/j.electrochem.2204301
    摘要3708)   HTML133)    PDF(pc) (4161KB)(4395)    收藏

    本文系统地总结了近年来钠离子电池中硬碳负极材料的研究进展以及相应储钠机理的发展历程,并从结构设计和电解液调控两方面综述了硬碳材料性能的提升策略。简述了前驱体的选择、碳化温度、预处理、造孔剂、杂原子掺杂、材料复合、电解液调控以及预钠化等策略对硬碳负极材料储钠性能的影响。本文为高性能低成本硬碳材料的设计合成和电解液匹配提供了新的见解,并展望了未来硬碳负极材料进一步研发的方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 电化学阻抗谱弛豫时间分布基础
    王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊
    电化学(中英文)    2020, 26 (5): 607-627.   DOI: 10.13208/j.electrochem.200641
    摘要8423)   HTML1275)    PDF(pc) (55357KB)(10195)    收藏

    电化学阻抗谱(EIS)是一种高效的原位/非原位电化学表征技术,已在电化学能源领域得到广泛应用,如用于锂离子电池、超级电容器、燃料电池等材料及器件性能的诊断和优化. 弛豫时间分布(DRT)是一种不依赖于研究对象先验知识的EIS解析技术,可用于分离和解析EIS中高度重叠的物理化学过程. 为了促进DRT解析技术的应用和推广,本文详细阐述了如下问题: 1) DRT解析原理、实现算法及重要扩展; 2) 典型电路基元的DRT解析分析; 3) DRT的具体实现及在电化学能源中的典型应用举例; 4)DRT解析技术研究进展、存在问题及发展趋势.

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 原位 57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用
    Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎
    电化学(中英文)    2022, 28 (3): 2108541-.   DOI: 10.13208/j.electrochem.210854
    摘要2443)   HTML8359)    PDF(pc) (3564KB)(5245)    收藏

    近年来,析氧反应(oxygen evolution reaction)中针对高效且具有成本效益的电催化剂开发一直是构筑有效利用可再生能源存储系统和水分解生产清洁氢能燃料的重大障碍。OER过程涉及四电子、四质子耦合并形成氧-氧(O-O)键,因此动力学上进程缓慢。为提升其在水分解产氢及二氧化碳还原反应中的应用,需要开发高效催化剂,降低OER过电位,以减轻能量转换过程中固有的能量损失。研究表明,IrO2和RuO2具有较低析氧过电位,但储量低、价格昂贵,大大限制了其在析氧反应中的大规模应用。而Ni-Fe基析氧催化剂在碱性水分解反应中展现了优异的性能,其在水分解过程中的催化机制仍有待进一步研究。
    为了解决Ni-Fe基催化剂在析氧反应过程中反应位点及催化反应机制等关键问题,迫切需要更先进的原位技术来准确表征,原位追踪催化剂形态变化与电解质/电极之间的界面相互作用的影响。光谱与电化学结合的原位技术可以监测析氧反应过程催化剂自身的变化。目前,已有大量原位光谱技术与电化学进行结合,揭示Ni-Fe基催化剂在OER过程中的反应机理及活性位点,包括原位表面增强拉曼光谱、原位同步辐射X射线吸收光谱、原位紫外-可见光谱、原位扫描电化学显微镜及原位穆斯堡尔光谱等。其中,原位拉曼技术可以观察Ni-Fe催化剂的振动,可以在电解液中施加测试电压条件下监测电化学反应过程中的中间体,从而提供实时反应信息,有助于追踪电化学驱动反应是如何发生的。原位同步辐射技术可以研究OER过程中Ni-Fe催化剂材料的电子结构和局部几何结构的信息,但目前的研究中更多的是探究Ni的价态变化,对Fe的研究信息较少。原位紫外-可见光谱也主要是针对Ni(OH)2的变化展开研究,逐渐提高施加电位,Ni(OH)2会向着NiOOH逐渐变化,紫外-可见技术可以追踪Ni-Fe基电催化剂中的金属氧化过程。众多电化学原位光谱技术中,57Fe穆斯堡尔谱因具有超高的能量分辨率,是确定催化剂相结构、鉴定活性位点、阐明催化机理以及确定催化活性与催化剂配位结构之间关系的最佳手段。此外,原位穆斯堡尔光谱技术基于原子核和核外电子的超精细相互作用而给出的同质异能移、四极矩分裂以及有效磁场等针对催化剂中的Fe位点的氧化态、电子自旋构型、对称性和磁性信息进行研究,为Ni-Fe基催化剂在析氧反应中的应用提供强有力的支持。
    1957年,德国科学家鲁道夫·路德维希·穆斯堡尔(Rudolf Ludwig Mössbauer)在其27岁时,发现作为晶格谐振子的原子在发射或吸收γ射线时以一定的概率不会改变它们的量子力学状态,而这一γ射线的核共振吸收现象于1961年获得诺贝尔物理学奖,不久后被命名为穆斯堡尔效应。穆斯堡尔效应是来自于无反冲的γ射线吸收和发射的核共振现象,能量Ee处于激发态的原子核(Z质子和N中子)通过产生能量为Eγγ射线跃迁到能量为Eg的基态,γ射线可能会被处于基态的另一个相同类型的原子核(相同的ZN)吸收,从而转变为能量Ee的激发态。只有当发射线和吸收线足够重叠时,才能看到共振吸收。
    原位穆斯堡尔谱在Ni-Fe催化剂析氧反应中应用,首先需要搭建57Fe穆斯堡尔谱仪与电化学工作站联用。标准的穆斯堡尔光谱仪主要由放射源(通常是57Co在Rh或Pd金属基质中用于57Fe穆斯堡尔光谱)、速度传感器、速度校准装置、波形发生器和同步器、γ射线检测系统、多通道分析仪、计算机,并且可选配低温恒温器或高温烘箱,以控制测量过程处于适宜温度。实际测试过程中,穆斯堡尔谱可以通过速度扫描方法生成,利用移动驱动器或速度传感器以特定速度重复移动源或样品(所谓的多普勒运动),同时γ射线连续传输或发射穿过样品并计数在同步通道上。获得穆斯堡尔谱图后,基于穆斯堡尔谱数据库(https://medc.dicp.ac.cn/,由中国科学院大连化学研究所穆斯堡尔效应数据中心从全世界收集的穆斯堡尔谱样品数据),对57Fe穆斯堡尔谱进行分析拟合,对含Fe基材料的物相、价态、自旋态和配位结构进行归因和分析。数据分析拟合主要利用MossWinn数据分析和拟合软件(http://www.mosswinn.com/)。以Ni-Fe氢氧化物催化剂为例,对于原始催化剂,其仅存在一种Fe3+物种,当该催化剂参与OER过程后,可能会存在Fe4+,在双峰基础上,拟合结果中则会出现肩峰向负侧移动现象,可以确认高价Fe的存在,例如Fe4+。为充分证明高价Fe的存在,对于Ni-Fe基催化剂的穆斯堡尔谱测试,还需在工况条件下进行原位测试。
    20世纪80年代后期,非贵金属氧化物和氢氧化物代替贵金属氧化物阳极催化剂的电解水研究开始受到关注。Corrigan等通过将Fe杂质引入NiO阳极,测试过程中发现OER活性会增加,但后续的研究中对于Fe究竟如何改变Ni基催化剂的OER性能仍旧不清晰。尔后,原位穆斯堡尔谱的引入逐渐揭开Fe在Ni-Fe电催化水分解析氧反应中的作用。为提高测试准确性并保证穆斯堡尔谱信号的稳定,本实验室对原位穆斯堡尔谱装置做了开发和改进。主要包括三部分:(1) 穆斯堡尔光谱仪,(2) 电化学工作站,以及(3) 自主设计的原位OER电化学反应池。在我们的实验室中,使用了具有14.4 keV级γ射线的单线57Fe穆斯堡尔谱放射源57Co(Rh),可以减少电解液中的信号衰减并获得令人满意的信噪比,附带CHI660E电化学工作站。对于常规的OER测试,在室温298 K条件下进行测试,测试前首先用α-Fe对穆斯堡尔谱仪进行多普勒速度校准,在进行原位穆斯堡尔谱-OER实验之前,电解液用氮气或氩气饱和以去除溶解的氧气。为了保证测试信号的准确性,实验中所使用的电解池不含任何Fe杂质,因此采用了Teflon材料。为避免测试过程中产生的O2气泡对信号产生干扰,可以采用蠕动泵循环电解液,并且保证测试过程中局部的微反应环境的一致性。对于普通OER测试,仅需要少量催化剂,但对于原位57Fe穆斯堡尔谱测试,只有保证Ni-Fe催化剂中57Fe含量充足的条件下,才可以获得高质量信号。但OER过程中,不建议催化剂载量过高,催化过程中主要是表面催化剂在反应,当样品过厚时,深层样品无法参与析氧反应过程,可能会有部分Fe仍旧维持Fe3+状态。通常,对于常规57Fe穆斯堡尔光谱测量的催化剂,若在制备中使用普通Fe源,则需要Fe含量在5 ~ 10 mg·cm-2,这其中仅有~2.2%的自然丰度57Fe同位素,需要长时间监测才可以采集到信号。为保证实验的顺利进行,可以在样品制备过程中直接使用57Fe源,方便快捷采集高质量信号。为了保证样品测试的准确性,在OER开始前,我们可以在同一电解液中,在开路电位(OCP)下,对其进行测试,这一原始样品的测试可与后续施加电位的Ni-Fe催化剂测试结果进行对比。有外加电压测试时,需要保证催化剂处于稳定状态下进行测试,整个测试过程中保持电流密度稳定,这不仅可以保证催化剂的稳定性,还有助于确定催化剂的真实结构。
    利用原位57Fe穆斯堡尔谱,我们对通过Ni-Fe普鲁士蓝类似物原位拓扑转换获得的Ni-Fe羟基氧化物电催化剂进行了测试。基于原位拉曼技术,我们发现在阳极电位下,Ni-Fe催化剂中α-Ni(OH)2相会不可逆转变为γ-NiOOH。原位57Fe穆斯堡尔谱测试结果表明,在较低的施加电位(例如1.22 V 和1.32 V vs. RHE)下,Fe在NiFe0.2-OxHy中仅处于+3氧化态,其光谱结果与开路电位下NiFe0.2-OxHy谱图相似,其中只有一个双峰,两个峰的强度相等,可归因于高自旋 Fe3+物种。但随着外加电位增加并达到1.37 V,两个峰的强度开始变得不相等,开始出现一个小的肩峰,其同质异能移(δ)值约为-0.25 mm·s-1,可以归属为 Fe4+ 。随着电压的逐渐增加,催化剂中的Fe4+含量逐渐增加。在OER过程中,施加电位1.42 V vs. RHE时,Fe4+含量~ 12%。当施加的电势达到1.57 V时,催化剂中Fe4+的含量进一步增加到约40%。这一实例充分展现了原位57Fe穆斯堡尔谱与Ni-Fe催化OER过程的应用,也体现了NiFe0.2-OxHy催化剂原位产生的Fe4+物种的量与其水氧化反应性能呈正相关,进一步加深了对Ni-Fe水氧化催化机理的理解。
    Ni-Fe基催化剂因其价格低廉,电催化析氧性能优异,因此成为碱性水分解析氧过程的理想候选者。虽然Ni-Fe基电催化剂表现出优异的OER活性,但缺乏长期稳定性阻碍了其在商业中的应用。因此,充分了解Ni-Fe催化剂的衰减机理,包括形态、组成、晶体结构和活性位点数量的变化,对于设计稳定和高效Ni-Fe催化材料非常重要,充分了解Ni-Fe催化剂在OER过程中的电子结构及其与析氧反应中间体的相互作用尤为重要。原位拉曼及原位紫外-可见光谱可以对Ni-Fe催化剂中的Ni(OH)2到NiOOH的变化进行深入探究,而原位57Fe穆斯堡尔谱测试则可以揭示Ni-Fe基催化剂中Fe的电子环境及其电子的、结构的和磁性的变化。穆斯堡尔光谱为研究Ni-Fe催化剂中Fe的局部电子结构、局部配位、键合和氧化态的提供了强大技术支撑。最近,穆斯堡尔光谱在电催化领域获得了越来越多的关注,它对于检测不同铁基催化材料中的主要活性位点有着重要作用。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 碱性介质中非贵金属氧还原催化剂的结构调控进展
    王雪, 张丽, 刘长鹏, 葛君杰, 祝建兵, 邢巍
    电化学(中英文)    2022, 28 (2): 2108501-.   DOI: 10.13208/j.electrochem.210850
    摘要919)   HTML149)    PDF(pc) (2256KB)(4867)    收藏

    碱性介质中的氧还原反应是金属-空气电池和阴离子交换膜燃料电池的重要电化学过程。但是,其动力学缓慢,因而引起了对高效电催化剂的广泛研究。其中,非贵金属催化剂可有效地规避铂基催化剂成本和储量的问题,而备受关注。但其挑战在于将性能提高到可与Pt基催化材料媲美。鉴于非贵金属催化剂的组成和结构对催化性能有着至关重要的影响,精准地调控催化剂的结构有望消除非贵金属催化剂和商业铂基催化剂的活性差距。在该评述中,我们致力于总结通过结构调控来提升性能的研究进展。我们首先介绍了四种极具代表性的非贵金属催化剂,包括非金属碳基材料、金属化合物、石墨化碳层包覆金属颗粒、原子分散的金属-氮-碳材料,突出了催化活性位点和催化机理。随后,针对于这些催化剂,我们归纳了从微纳尺度到原子层面的结构调控策略,如分级多孔结构的设计、界面工程、缺陷工程以及原子对活性位点的构建。我们着重讨论了结构和性能之间的依赖关系。从加速传质、增加可及的活性位点数量、可调控的电子状态和多组分之间的协同效应,讨论了这些结构变化引起的活性改进的起源。最后,我们对该领域存在的挑战以及未来的前景进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 高温固体氧化物电解制氢技术发展现状与展望
    张文强, 于波
    电化学(中英文)    2020, 26 (2): 212-229.   DOI: 10.13208/j.electrochem.191144
    摘要2438)   HTML48)    PDF(pc) (2279KB)(11179)    收藏

    固体氧化物电解池是一种先进的能量转换装置,具有高效、简单、灵活、环境友好等特点,是目前国际能源领域的研究热点. 本文对高温固体氧化物电解制氢技术的基本原理、关键材料、系统组成、发展历程及国内外研究现状等进行了总结和分析,小结了该技术发展面临的主要挑战,简述了清华大学在高温固体氧化物电解领域近期的研究进展,并对其未来应用前景进行了展望.

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 第29卷第6期封面和目次
    电化学(中英文)    2023, 29 (6): 0-0.  
    摘要60)      PDF(pc) (102768KB)(4585)    收藏
    相关文章 | 多维度评价
    15. 多孔陶瓷支撑型管式固体氧化物电解池性能研究
    汪恒吉, 陈文国, 全周益, 赵凯, 孙毅飞, 陈旻, 奥坚科·弗拉基米尔
    电化学(中英文)    2023, 29 (12): 2204131-.   DOI: 10.13208/j.electrochem.2204131
    摘要469)   HTML8)    PDF(pc) (9516KB)(3461)    收藏

    固体氧化物电解池是一种新型能源转换技术,能实现间歇式能源到氢能的高效转化,为能源的有效利用提供了新途径。本文针对固体氧化物电解池金属镍基阴极支撑体在电解过程中的局部氧化以及由此引发的电池结构稳定性问题,提出了一种多孔氧化钇稳定的二氧化锆(YSZ)支撑型管式固体氧化物电解池,其构型为多孔YSZ支撑体/Ni-YSZ燃料极电流收集层/Ni-YSZ燃料极电化学催化层/YSZ/Ce0.8Sm0.2O1.9双层电解质层以及La0.6Sr0.4Co0.2Fe0.8O3-δ空气电极,研究了造孔剂(聚甲基丙烯酸甲酯,PMMA)的含量对多孔YSZ支撑体的孔隙率、孔径分布和支撑体机械强度的影响,考察了电解池在H2O-H2气氛中的电化学电解性能。研究结果表明,当PMMA含量为25wt.%时,电解池具有最优的综合力学性能和电解催化活性,在750 °C的工作温度下,电解池的产氢气速率为3 mL·min-1·cm-2,电解池在10次升降温热循环过程中电解性能衰减为~5%,表现出优良的电解稳定性。本研究结果验证了多孔YSZ支撑型管式电解池的应用可行性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 质子交换膜燃料电池输出性能的数值模拟
    罗鑫,陈士忠,吴玉厚
    电化学(中英文)    2018, 24 (2): 182-188.   DOI: 10.13208/j.electrochem.170505
    摘要1689)      PDF(pc) (31187KB)(1256)    收藏
    运用COMSOL软件模拟分析3种流道下的质子交换膜燃料电池输出性能. 在相同的操作条件下,比较了单蛇形流道、交指流道以及混合流道之间的性能差异,详细说明了3种流道下质子交换膜燃料电池输出性能差异的原因. 由模拟结果分析得出,混合流道输出性能最好,交指流道输出性能其次,单蛇形流道输出性能最差;混合流道的排水能力最好,氧气浓度分布的最均匀;混合流道阴极进出口氧气浓度差最小. 模拟结果对质子交换膜燃料电池结构的优化和设计具有重要的指导意义.
    参考文献 | 相关文章 | 多维度评价
    17. 碱性电解水高效制氢
    谢文富, 邵明飞
    电化学(中英文)    2022, 28 (10): 22014008-.   DOI: 10.13208/j.electrochem.2214008
    摘要2261)   HTML569)    PDF(pc) (2471KB)(2464)    收藏

    与传统化石能源制氢技术相比,利用可再生能源驱动电解水制氢技术具有绿色可持续和制氢效率高等优势,被认为是目前最具前景的制氢方式。然而, 由于电解水两极反应动力学缓慢、 催化剂稳定性较差, 限制了其大规模发展。此外, 阳极析氧反应存在较高的过电势, 从而导致当前制氢能耗与成本较高, 严重制约了其商业化应用。 为了解决上述问题与挑战,本文对当前发展较为成熟的碱性电解水技术进行了综合讨论与分析。 首先, 对电解水发展历程中的重要节点进行了总结, 便于读者了解该领域。进一步, 从电催化剂、 电极、 反应和系统的角度深入总结了提升电解水制氢性能的有效策略。作者分别介绍了近年来层状双金属氢氧化物基电解水催化剂、电解水制氢耦合氧化反应以及可再生能源驱动的电解水系统的重要研究进展; 同时对结构化催化剂在电解水应用中的构效关系进行了深入分析。最后, 对该领域存在的挑战和未来发展方向进行了展望,希望能为氢能的发展和推广提供一定的思路。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 一种测量聚合物/金属界面腐蚀电位分布的电化学新方法
    林昌健, 卓向东, 陈纪东, 王辉, 胡荣宗, 宋毅, 谭建光
    电化学(中英文)    1996, 2 (2): 144-148.  
    摘要2263)      PDF(pc) (142KB)(2414)    收藏
    在绝大多数环境下,聚合物/金属界面的腐蚀破坏的本质是电化学过程,因此,不少电化学技术,包括直流稳态技术和交流阻抗技术等被广泛用于研究金属/聚合物界面的腐蚀破坏机制,评测有机涂层的耐蚀性能.然而,由于聚合物/金属界面腐蚀破坏的“闭塞”条件和聚合物膜层的高绝缘性,传统的电化学方法均不能直接获得聚合物/金属界面二维空间的腐蚀电位分布,难以直接研究聚合物/金属界面的腐蚀破坏过程及相关的影响因素.聚合物/金属界面腐蚀电位的测量有助于研究聚合物/金属等复合材料界面腐蚀破坏机理,评测有机聚合物涂覆层的耐蚀性能.本文提出一种微计算机控制的阵列电极技术,用于原位测量金属/聚合物界面电位分布.首次建立了8×8阵列电极和微机控制的阵列电极测量系统,可直接测量聚合物/金属界面腐蚀电位的二维分布.由此可深入研究有关腐蚀物种在聚合物相内传输过程,聚合物涂层的不均一性及缺陷分布,以及聚合物/金属界面腐蚀的发生、发展机制.应用阵列电极技术首次在原位获得聚合物涂层的缺陷分布及不均一性,并考查了聚合物涂层缺陷对诱导聚合物/金属界面腐蚀破坏的关系.阵列电极技术还首次提供了在聚合物/金属界面腐蚀破坏发展过程中阴、阳极同时存在,共同发展的直接的
    相关文章 | 多维度评价
    19. 工业级碱性海水电解:近期进展和展望
    张涛, 刘一蒲, 叶齐通, 范红金
    电化学(中英文)    2022, 28 (10): 2214006-.   DOI: 10.13208/j.electrochem.2214006
    摘要1116)   HTML415)    PDF(pc) (1695KB)(3429)    收藏

    由太阳能、风能和海洋等可再生能源驱动的工业级水分解产氢为能源和环境的可持续性发展开辟了一条极具潜力的道路。然而,在工业上最先进电解技术使用高纯水作为氢源,这将带来严重的淡水资源危机。海水分解为饮用水短缺提供了一条切实可行的解决途径,但仍面临规模工业化生产的巨大挑战。在这里,我们总结了海水分解的最新进展,包括反应机制、电极设计标准和直接海水分解的工业电解槽。深入讨论了应对海水电解中的关键挑战,如活性位点、反应选择性、耐腐蚀性和传质能力等的解决方案。此外,该文章重点总结了海水电解设备的最新发展,并提出了设计长寿命直接海水电解装置的有效策略。最后,我们对直接海水电解的未来机遇和挑战提出了自己的观点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 电极/碱性聚电解质界面的微分电容曲线和零电荷电位测定
    刘晨希, 邹泽萍, 胡梅雪, 丁宇, 谷宇, 刘帅, 南文静, 马溢昌, 陈招斌, 詹东平, 张秋根, 庄林, 颜佳伟, 毛秉伟
    电化学(中英文)    2024, 30 (3): 2303151-.   DOI: 10.13208/j.electrochem.2303151
    摘要219)   HTML7)    PDF(pc) (1331KB)(343)    收藏

    碱性聚合物电解质作为现代碱性氢氧燃料电池的核心组成部分,其单离子导体的特性使得“电极/碱性聚电解质”界面的性质与“电极/溶液”界面有所不同。本文使用微电极,运用循环伏安、电化学交流阻抗以及浸入法等方法,测定了电极/碱性聚电解质界面的微分电容曲线和零电荷电位。该界面的微分电容曲线呈“U”状,且存在局域极小值,该极小值所对应的电位与浸入法测得的零电荷电位数值一致。单离子导体的特性使得“电极/碱性聚电解质”界面在零电荷电位两侧表现出不同的电化学极化行为。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    21. 锂/钠离子电池材料的固体核磁共振研究进展
    钟贵明,刘子庚,王大为,李琦,傅日强,杨勇
    电化学(中英文)    2016, 22 (3): 231-243.   DOI: 10.13208/j.electrochem.151246
    摘要1241)      PDF(pc) (8428KB)(1875)    收藏

    固体核磁共振技术是一种定量分析固体材料结构与组成的强有力手段,结合固体核磁共振和常规x-射线衍射(XRD)、 x-射线吸收谱(XAS)等表征方法可对锂/钠离子电池材料在电化学反应中的结构演化过程进行全面的分析. 例如通过固体核磁共振研究, 可获得不同合成与修饰条件下, 锂/钠离子电池电极和电解质材料体相以及电极/电解质界面层的化学组成、局域结构和离子扩散动力学等信息,为高性能电池材料的设计和研发提供重要的基础数据. 本文结合本课题组的研究工作,综述了近三年来国内外固体核磁共振技术在锂/钠离子电池电极、电解质材料以及固体电解质界面膜(SEI)研究中的应用和进展.

    参考文献 | 相关文章 | 多维度评价
    22. 二氧化钼-碳复合涂层的电化学性能研究
    李全一,杨琪,赵艳红
    电化学(中英文)    2018, 24 (2): 160-165.   DOI: 10.13208/j.electrochem.170409
    摘要1096)      PDF(pc) (43071KB)(1181)    收藏

    应用简单的刮涂法以及真空煅烧可制备出承载在铜箔表面的二氧化钼-碳(MoO2-C)复合涂层,并对样品的形貌、成分、结构和电化学性能进行分析.结果表明,该复合涂层由单斜结构的MoO2纳米粒子和无定形碳组成.一些MoO2纳米粒子承载在碳基体表面,其尺寸为5~30nm;一些MoO2纳米粒子包覆在碳基体内部,其尺寸约为5nm. MoO2-C复合涂层为多孔结构,其孔隙尺寸为1~3nm.该复合涂层与铜箔结合紧密,界面处没有裂纹.承载在铜箔表面的MoO2-C复合涂层的比容量高、循环和倍率性能良好.在100mA·g-1电流密度下,该负极经过100次循环后的比容量为814mAh·g-1,在循环过程中没有出现明显的容量衰减,即使在5000mA·g-1的高电流密度下,其比容量仍有188mAh·g-1.

    参考文献 | 相关文章 | 多维度评价
    23. 超微电极实验:基本原理、制备方法和伏安性能
    马桢, 林佳阳, 南文静, 韩联欢, 詹东平
    电化学(中英文)    2023, 29 (7): 2216002-.   DOI: 10.13208/j.electrochem.2216002
    摘要1021)   HTML51)    PDF(pc) (1283KB)(1352)    收藏

    超微电极电极尺寸小,双电层电容小,IR降小,传质速率快,响应快,信噪比高,兼具时间和空间分辨率,不仅可以研究快速电极反应动力学性质,而且可以作为电化学扫描显微镜探针,实现基底反应活性的成像,在电化学各个领域均有重要应用,成为一种重要的电化学实验方法。本文将扼要介绍超微电极的基本原理、一种简易的制备方法及其伏安性能的表征实验,以期对开展超微电极实验研究的电化学工作者有所裨益。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 第29卷第1期封面和目次
    电化学(中英文)    2023, 29 (1): 0-0.  
    摘要219)      PDF(pc) (111954KB)(617)    收藏
    相关文章 | 多维度评价
    25. 硝基苯的电还原特性研究
    马淳安, 张文魁, 黄辉, 甘永平, 刘美星, 童少平
    电化学(中英文)    1999, 5 (4): 395-400.  
    摘要2626)      PDF(pc) (309KB)(3166)    收藏
    采用准稳态极化、循环伏安、线性扫描和恒电位阶跃等测试方法,对H2SO4 溶液中硝基苯的电还原特性进行研究,评价了硝基苯在Cu 、Cu_Hg 和Cu_Ni 电极的电还原反应活性,研究了硝基苯电还原为PAP的中间步骤,并对反应机理进行了探讨.结果表明,硝基苯在酸性介质中的电还原反应存在中间步骤,并伴有反应物吸附现象,硝基苯电还原反应受硝基苯及其还原产物在溶液中的液相传质步骤控制
    参考文献 | 相关文章 | 多维度评价
    被引次数: Baidu(94)
    26. 锂-氧气电池:正极催化剂的最新进展与挑战
    温波, 朱卓, 李福军
    电化学(中英文)    2023, 29 (2): 2215001-.   DOI: 10.13208/j.electrochem.2215001
    摘要1424)   HTML670)    PDF(pc) (3944KB)(1363)    收藏

    非质子锂-氧气电池具有高理论能量密度,在过去几年里受到了广泛关注。然而,动力学缓慢的氧还原反应(ORR)/氧析出反应(OER)和放电产物Li2O2导电性差导致锂-氧气电池过电位大,放电容量有限,循环寿命短。开发有效的锂-氧气电池正极催化剂可以调控放电与充电过程中Li2O2的形成和可逆分解,减小放电/充电极化。尽管提升ORR/OER动力学的正极催化剂已经取得了一系列重要进展,但是对正极在放电和充电中Li2O2生成和分解过程的理解依然是不足的。这篇综述聚焦于锂-氧气电池正极催化剂的最新进展,总结了催化剂与Li2O2生成/分解的作用关系,本文首先指出了锂-氧气电池正极面临的科学问题,包括动力学缓慢的ORR/OER过程和导电性差的反应产物Li2O2钝化电极,并提出了锂-氧气电池正极设计准则。通过对最近报道的正极催化剂进行分类讨论,明晰调控催化剂活性位点策略,理解在正极反应过程中不同催化剂的活性位点对反应中间产物的吸附状态,以及对Li2O2生成和分解的作用机制,评估了不同类型正极催化剂在锂-氧气电池的潜在应用。最后总结了锂-氧气电池正极催化剂依然存在的挑战,例如阐明正极催化剂活性位点与附着的Li2O2界面在充放电过程中的变化,并揭示了设计高效正极催化剂的决定因素,展望了通过光/磁协助、负极保护以及电解液设计等策略,进一步推动锂-氧气电池的应用。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 原子数精确的金属纳米团簇在电催化领域的应用研究进展
    庄志华, 陈卫
    电化学(中英文)    2021, 27 (2): 125-143.   DOI: 10.13208/j.electrochem.201246
    摘要1570)   HTML82)    PDF(pc) (2387KB)(2134)    收藏

    金属纳米团簇(M NCs)是由几个到数百个金属原子组成,其尺寸一般小于2 nm。金属纳米团簇在许多催化反应中表现出高的催化活性和选择性,这与金属纳米团簇具有高的比表面积、较多暴露的活性原子,以及与金属纳米粒子(M NPs)不同的电子结构有关。金属纳米团簇确定的组成和结构使其成为一种新型模型催化剂,对纳米团簇的催化性能研究有利于人们深入理解催化剂结构-性质之间的关系,更利于催化剂的理性设计与发展。结合近几年国内外和本课题组在金属纳米团簇电催化领域的研究进展和现状,本文对该领域的代表性工作进行了简要综述,并对其未来在电催化领域的应用前景和需要解决的关键问题进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 电化学测量中的欧姆电压降补偿问题
    陈佳琦, 叶旭旭, 廖玲文, 韦臻, 许绵乐, 陈艳霞
    电化学(中英文)    2021, 27 (3): 291-300.   DOI: 10.13208/j.electrochem.201257
    摘要3148)   HTML70)    PDF(pc) (1685KB)(2629)    收藏

    对工作电极与参比电极之间的溶液电阻(Ru)进行准确的欧姆电压降补偿是获取可靠的电化学实验结果的前提,但测量中该如何进行补偿尚未建立规范的操作流程。本文首先探究了工作电极与Luggin毛细管末端距离对Ru的影响。随后对比了Autolab PGSTAT 302N、CHI系列恒电位仪的交流阻抗法与CHI系列恒电位仪所测得Ru的差别。并且以铂电极上的氢析出反应为例,探究了灵敏度、补偿百分比以及仪器等因素对补偿后HER极化曲线带来的影响。深入讨论了产生这些偏差的原因,最后给出了规避和减轻此类问题以实现准确有效的欧姆电压降补偿的建议。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    29. 氢氧化钠水溶液体系中金属铬的电化学氧化过程
    韩平, 冯海涛, 董亚萍, 田森, 张波, 李武
    电化学(中英文)    2020, 26 (3): 413-421.   DOI: 10.13208/j.electrochem.190710
    摘要1984)   HTML86)    PDF(pc) (1318KB)(1870)    收藏

    铬铁电氧化溶出技术是一种全新的制备铬酸钠的方法,具有反应条件温和、过程可控、工艺环保等优点,然而金属铬在NaOH水溶液中的电化学氧化过程尚不明确. 本文采用循环伏安法(CV)和阳极极化法(LSV)对金属铬在NaOH水溶液中的电化学氧化过程进行研究. 使用EDS、SEM、XRD和XPS对电解前后的金属铬表征,判断中间物的产生,使用紫外可见分光光度计验证电解液中生成了铬酸钠. 结果表明,金属铬和中间产物Cr(OH)3可能依次发生电化学氧化直接生成Na2CrO4,阳极极化为金属铬的活化. 随着NaOH溶液浓度的增加,Cr(OH)3和Na2CrO4的生成量在增加,金属铬电化学氧化制备铬酸钠的适宜条件为碱浓度≥ 2 mol·L-1,阳极电势≥ 1.6 V(vs. SCE).

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南
    张露露, 李琛坤, 黄俊
    电化学(中英文)    2022, 28 (2): 2108471-.   DOI: 10.13208/j.electrochem.210847
    摘要3077)   HTML11890)    PDF(pc) (2138KB)(4207)    收藏

    本文定位在一篇电化学双电层(EDL)理论建模方面入门级文章。我们首先简要介绍了EDL的基本特征,简述了EDL理论建模的发展历史,特别是D.C. Grahame之后近几十年的发展历史。然后,我们依次介绍了平衡状态和动态下不同复杂度的EDL模型。作为一篇入门级文章,我们尽可能详细地阐释理论模型的物理图像、假设、数学推导、形式分析、数值分析,并附上Matlab仿真代码。平衡状态下的模型包括Gouy-Chapman-Stern(GCS)模型,Bikerman-Poisson-Boltzmann(BPB)模型,和非对称离子尺寸模型。我们强调GCS模型和BPB模型在处理离子有限尺寸上存在一个微妙的不同。GCS模型通过人为引入Helmholtz平面来考虑离子有限尺寸,但在Helmholtz平面内及弥散层内却依然采用没有考虑离子尺寸效应的Poisson-Boltzmann理论,因而此处的离子浓度可以无限大。与之不同,BPB模型通过格子气体方法,能够自洽描述离子有限尺寸效应。不同以往直接采用Poisson-Nernst-Planck方程描述EDL动态行为,我们从EDL的巨势出发,运用基本的泛函分析方法,推导了一个考虑离子有限尺寸的EDL动态模型。这一理论方法拓展性好。读者可以根据研究对象的需要,建立不同复杂度的EDL动态模型。最后,我们基于EDL动态模型,推导了EDL的电化学阻抗谱理论模型,以试图向读者展示如何从一个时域物理模型出发,推导相应的阻抗谱物理模型。读者若想要踏进理论电化学这个美丽的花园,根据我们自己学习和研究的经验,一个可行的方式是拿起纸和笔来开始推导本文所介绍的这些模型。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价