欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

电化学(中英文) ›› 2023, Vol. 29 ›› Issue (3): 2217008.  doi: 10.13208/j.electrochem.2217008

所属专题: “下一代二次电池”专题文章

• 综述 • 上一篇    下一篇

固态锂硫电池综述:从硫正极转化机制到电池的工程化设计

贾欢欢a, 胡晨吉a, 张熠霄a, 陈立桅a,b,c,*()   

  1. a上海交通大学化学化工学院,变革性分子前沿科学中心,上海电化学能源器件工程技术研究中心,物质科学原位中心,上海 200240,中国
    b上海交通大学溥渊未来技术学院未来电池研究中心,上海 200240,中国
    c中国科学院苏州纳米技术与纳米仿生研究所i-Lab,江苏 苏州 215123,中国
  • 收稿日期:2022-09-19 修回日期:2022-10-10 接受日期:2022-11-04 出版日期:2023-03-28 发布日期:2022-11-07

A Review on Solid-State Li-S Battery: From the Conversion Mechanism of Sulfur to Engineering Design

Huan-Huan Jiaa, Chen-Ji Hua, Yi-Xiao Zhanga, Li-Wei Chena,b,c,*()   

  1. aSchool of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Electrochemical Energy Device Research Center (SEED) and in-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
    bFuture Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
    ci-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
  • Received:2022-09-19 Revised:2022-10-10 Accepted:2022-11-04 Published:2023-03-28 Online:2022-11-07
  • Contact: *Tel: (86-21)54743179, E-mail: lwchen2018@sjtu.edu.cn

摘要:

锂硫电池具有超高的理论能量密度(2567 Wh·kg-1),且其实际能量密度最高可达600 Wh·kg-1。然而,液态体系的Li-S电池和传统锂电池一样存在着安全隐患。用固态电解质取代电解液有望提高锂电池的安全性能,在近二十年受到了广泛的研究。对于固态锂硫电池来说,除了由于正极材料本身的不同带来的转化机制上的差别,固态电解质的物理化学性质也会显著影响其电化学行为。这篇综述分类讨论了已报道的不同固态锂硫电池体系在性能上的优缺点及其中主要的失效机制,对其能量密度低、循环稳定性差的原因及改善电池综合性能的策略进行了归纳分析,旨在从固态锂硫电池微观机制到全电池水平的工程化设计提供全面的理解,推动固态锂硫电池的进一步发展。

关键词: 固态锂硫电池, 转化动力学, 动力学稳定的界面, 失效机理, 工程化设计

Abstract:

Lithium-sulfur (Li-S) batteries attract sustained attention because of their ultrahigh theoretical energy density of 2567 Wh·kg-1 and the actual value over 600 Wh·kg-1. Solid-state Li-S batteries (SSLSBs) emerge in the recent two decades because of the enhanced safety when compared to the liquid system. As for the SSLSBs, except for the difference in the conversion mechanism induced by the cathode materials themselves, the physical-chemical property of solid electrolytes (SEs) also significantly affects their electrochemical behaviors. On account of various reported Li-S batteries, the advantages and disadvantages in performance and the failure mechanism are discussed in this review. Based on the problems of the reported SSLSBs such as lower energy density and faster capacity fading, the strategies of building high-performance SSLSBs are classified. The review aims to afford fundamental understanding on the conversion mechanism of sulfur and engineering design at full-cell level, so as to promote the development of SSLSBs.

Key words: Solid-state Li-S batteries, Conversion kinetics, Dynamically stable interface, Failure mechanism, Engineering design