欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

电化学(中英文) ›› 2023, Vol. 29 ›› Issue (1): 2215008.  doi: 10.13208/j.electrochem.2215008

所属专题: “电催化和燃料电池”专题文章

• 综述 • 上一篇    下一篇

瓜环基金属纳米催化剂的电化学研究进展

韦宗楠a,b, 曹敏纳b,*(), 曹荣b,*()   

  1. a中国科学技术大学化学与材料科学学院,安徽 合肥 230026
    b中国科学院福建物质结构研究所,福建 福州 350002
  • 收稿日期:2022-07-15 修回日期:2022-08-17 接受日期:2022-09-01 出版日期:2023-01-28 发布日期:2022-09-04

Research Progress in Cucurbit[n]uril-Based Metal Nanomaterials for Electrocatalytic Applications

Zong-Nan Weia,b, Min-Na Caob,*(), Rong Caob,*()   

  1. aDepartment of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
    bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received:2022-07-15 Revised:2022-08-17 Accepted:2022-09-01 Published:2023-01-28 Online:2022-09-04
  • Contact: * Min-Na Cao: Tel: (86-591)83714517, E-mail address: mncao@fjirsm.ac.cn;Rong Cao, Tel: (86-591)83714517, E-mail address: rcao@fjirsm.ac.cn

摘要:

金属纳米材料在电催化应用中展示出良好的性能,但是它们依旧面临着稳定性差和调控策略有限的问题。引入第二组分是一种有效的策略,能够很好的改善其催化活性与稳定性。在这篇综述中,我们概述了结合金属纳米材料和瓜环(CB[n])用于电催化应用。瓜环是一系列的具有刚性结构、高稳定性、与金属配位的官能团的大环,它们适合稳定金属纳米材料并对其进行调控。本文讨论按照瓜环的功能分类,包含瓜环作为保护剂、瓜环基的超分子自组装体以及瓜环作为前驱体制备氮掺杂多孔碳。多种金属纳米催化剂,包括金属纳米颗粒(Pt,Ir,Pd,Ru,Au)、金属单原子(Fe,Co,Ni)以及过渡金属碳化物(TMCs)成功与瓜环或瓜环衍生的碳材料复合,这些复合材料在许多电催化反应中展示出优异的性能和稳定性,反应包括了氧还原反应(ORR)、析氧反应(OER)、析氢反应(HER)、二氧化碳还原反应(CO2RR)、甲烷氧化反应(MOR)、乙醇氧化反应(EOR)。其中,一些金属-瓜环复合物可进一步作为双功能催化剂用于全水解和燃料电池中。瓜环基的纳米催化剂具有媲美商用催化剂的性能,其稳定性甚至可优于商用催化剂。实验分析以及密度泛函理论(DFT)计算均证明,该提升得益于瓜环和金属纳米晶之间的相互作用以及瓜环自身的稳定性。最后,我们讨论了瓜环基电催化剂的挑战与机遇。本综述提供了通过瓜环构筑具有优异性能的金属纳米材料,并期待该策略将有助于开发高效催化剂并用于更多的电化学应用中。

关键词: 电催化, 燃料电池, 电解水, 瓜环, 金属纳米材料

Abstract:

Metal nanomaterials have exhibited excellent performance in electrocatalytic applications, but they still face the problems of poor stability and limited regulation strategies. It is an efficient strategy for greatly enhanced catalytic activity and stability by introducing a second component. In this review, we provide the sketch for the combination of metal nanomaterials and cucurbit[n]urils (CB[n]s) in electrocatalytic applications. CB[n]s are a series of macrocycles with rigid structure, high stability, and function groups for coordinating with metal sites, which make them promising to stabilize and modulate the metal nanomaterials for ideal performance. The discussion classifies the roles of CB[n]s, involving CB[n]s as protecting agents, CB[n]-based supramolecular self-assemblies and CB[n]s as the precursor for the preparation of N-doped holy carbon matrix. Various metal nanocatalysts including metal (Pt, Ir, Pd, Ru, Au) nanoparticles, metal (Fe, Co, Ni) single-atoms, and transition metal carbides (TMCs) have been integrated with CB[n] or CB[n]-derived carbon matrix. These nanomaterials show superior activity and stability in multiple electrocatalytic reactions, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). Furthermore, a few metal-CB[n] composites can become bifunctional catalysts applied in the overall water splitting and fuel cell. It is surprising that the activity of CB[n]-based nanocatalysts is comparable with that of commercial catalyst, and the stability is even better. The experimental analysis together with the density functional theory (DFT) calculations verifies that the improvement can be attributed to the interaction between the metal nanocrystal and CB[n]s as well as the characteristic stability of CB[n]s. Finally, we talk about the challenges and opportunities for the cucurbit[n]uril-based electrocatalysis. This review provides an impressive strategy to obtain well-defined metal nanomaterials constructed with CB[n]s with enhanced performance, and expects that such a strategy will develop more efficient catalysts for a broader range of electro-applications.

Key words: Electrocatalysis, Fuel cells, Water splitting, Cucurbit[n]uril, Metal nanomaterials