欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

电化学(中英文) ›› 2022, Vol. 28 ›› Issue (9): 2214010.  doi: 10.13208/j.electrochem.2214010

所属专题: “电催化和燃料电池”专题文章

• 综述 • 上一篇    下一篇

低铱酸性氧析出电催化剂的研究进展

倪静1,2, 施兆平1,2, 王显1,2, 王意波1,2, 吴鸿翔1,2, 刘长鹏1,2,*(), 葛君杰1,2,3,*(), 邢巍1,2,*()   

  1. 1.中国科学院长春应用化学研究所,吉林省先进低碳化学电源重点实验室,电分析化学国家重点实验室,吉林 长春 130022
    2.中国科学技术大学应用化学与工程学院,安徽 合肥,230026
    3.中国科学院大连洁净能源创新研究院,辽宁 大连116023
  • 收稿日期:2022-07-08 修回日期:2022-07-21 出版日期:2022-09-28 发布日期:2022-08-17
  • 通讯作者: 刘长鹏,葛君杰,邢巍 E-mail:liuchp@ciac.ac.cn;gejj@ciac.ac.cn;xingwei@ciac.ac.cn

Recent Development of Low Iridium Electrocatalysts toward Efficient Water Oxidation

Jing Ni1,2, Zhao-Ping Shi1,2, Xian Wang1,2, Yi-Bo Wang1,2, Hong-Xiang Wu1,2, Chang-Peng Liu1,2,*(), Jun-Jie Ge1,2,3,*(), Wei Xing1,2,*()   

  1. 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China
    2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
    3. Dalian National Laboratory for Clean Energy,Chinese Academy of Sciences, Dalian 116023, China
  • Received:2022-07-08 Revised:2022-07-21 Published:2022-09-28 Online:2022-08-17
  • Contact: Chang-Peng Liu,Jun-Jie Ge,Wei Xing E-mail:liuchp@ciac.ac.cn;gejj@ciac.ac.cn;xingwei@ciac.ac.cn
  • About author:First author contact:

    #These authors contributed equally to this work.

摘要:

开发高性能、 低成本的氧析出反应(OER)电催化剂是促进质子交换膜水电解(PEMWE)制氢规模化应用的关键。迄今为止, OER催化剂的最佳选项仍为贵金属铱(Ir), 但其仍存在活性不足和储量稀缺的问题, 进而增加了材料成本和电力成本。因此, 开发低Ir载量、 高活性和稳定性间距, 且能够满足PEMWE设备中大电流密度和长期运行要求的OER催化剂是十分必要的。这些目标的实现需要深入理解酸性OER机制、明晰材料设计方法, 并建立可靠的性能评估指标(特别是对耐久性的评估)。综上,本文首先系统总结了目前被广泛接受的酸性OER活性表达机制(即吸附析出机制、 晶格氧氧化机制和多活性中心机制)和失活机制(即活性物种溶解、晶相和形态演化、 催化剂脱落和活性位点阻塞), 为催化剂的微观结构设计提供指导。其次, 我们讨论了最近报道的几类低铱OER催化剂, 包括多金属合金氧化物、 负载型催化剂、具有特殊空间结构的催化剂和单位点催化剂, 并重点描述低Ir催化剂中的性能如何得以调控以及其中潜在的构效关系。随后, 我们介绍了常用的催化剂稳定性评价指标、 催化剂失活表征技术以及模拟PEMWE实际操作条件的催化剂寿命测试方法,希望为催化剂筛选提供依据。最后, 针对未来可用于PEMWE体系的低铱OER催化剂的探索提出了一些可行建议。

关键词: 氧析出反应, 质子交换膜水电解, 低铱载量, 活性稳定性机制, 稳定性评估指标

Abstract:

Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction (OER) is the key to implementing polymer electrolyte membrane water electrolyzer (PEMWE) for hydrogen production. To date, iridium (Ir) is the state-of-the-art OER catalyst, but still suffers from the insufficient activity and scarce earth abundance, which results in high cost both in stack and electricity. Design low-Ir catalysts with enhanced activity and stability that can match the requirements of high current and long-term operation in PEMWE is thus highly desired, which necessitate a deep understanding of acidic OER mechanisms, unique insights of material design strategies, and reliable performance evaluation norm, especially for durability. With these demand in mind, we in this review firstly performed a systematic summary on the currently recognized acidic OER mechanism on both activity expression (i.e. the adsorbate evolution mechanism, the lattice oxygen mediated mechanism and the multi-active center mechanism) and inactivation (i.e. active species dissolution, evolution of crystal phase and morphology, as well as catalyst shedding and active site blocking), which can provide guidance for material structural engineering towards higher performance in PEMWE devices. Subsequently, we critically reviewed several types of low-Ir OER catalysts recently reported, i.e. multimetallic alloy oxide, supported, spatially structured and single site catalysts, focusing on how the performance has been regulated and the underlying structure-performance relationship. Lastly, the commonly used indicators for catalyst stability evaluation, wide accepted deactivation characterization techniques and the lifetime probing methods mimicking the practical operation condition of PEMWE are introduced, hoping to provide a basis for catalyst screening. In the end, few suggestions on exploring future low-Ir OER catalysts that can be applied in the PEMWE system are proposed.

Key words: oxygen evolution reaction, polymer electrolyte membrane water electrolysis, low-iridium, catalytic mechanism on activity and stability, evaluation criteria for operational stability