欢迎访问《电化学》期刊官方网站,今天是 分享到:

电化学 ›› 2020, Vol. 26 ›› Issue (1): 19-31.  doi: 10.13208/j.electrochem.181246

所属专题: “下一代二次电池”专题文章 “表界面分析”专题文章

• 电化学研究方法专辑(客座编辑:中国科学技术大学 陈艳霞 教授) • 上一篇    下一篇

原子力显微镜在锂离子电池界面研究中的应用

董庆雨1, 褚艳丽1, 沈炎宾1,*(), 陈立桅1,2,*()   

  1. 1. 中国科学院苏州纳米技术与纳米仿生研究所,卓越纳米科学中心国际实验室,江苏 苏州 215213
    2. 上海交通大学化学化工学院,原位物质科学中心,上海 200240
  • 收稿日期:2019-06-03 修回日期:2019-11-12 出版日期:2020-02-28 发布日期:2020-01-16
  • 通讯作者: 沈炎宾,陈立桅 E-mail:ybshen2017@sinano.ac.cn;lwchen2008@sinano.ac.cn
  • 基金资助:
    国家自然科学基金项目(21625304);国家自然科学基金项目(21733012);国家自然科学基金项目(21773290);中国科学技术部国家重点研发计划项目(2016YFB0100102)

Atomic Force Microscopic Characterization of Solid Electrolyte Interphase in Lithium Ion Batteries

DONG Qing-yu1, CHU Yan-li1, SHEN Yan-bin1,*(), CHEN Li-wei1,2,*()   

  1. 1. i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
    2. In-situ Center for Physical Sciences,School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2019-06-03 Revised:2019-11-12 Online:2020-02-28 Published:2020-01-16
  • Contact: SHEN Yan-bin,CHEN Li-wei E-mail:ybshen2017@sinano.ac.cn;lwchen2008@sinano.ac.cn

摘要:

近几年,电动汽车市场的飞速发展对锂离子电池的能量密度和安全性提出了更高的要求. 然而,过去近30年,在应用终端市场的大力推动下,锂离子电池的电极材料、电池结构设计和生产工艺都已经发展得比较成熟,容量提升空间已经比较小,想要进一步提高现有锂离子电池的能量密度,需要对锂离子电池的整个系统和工作原理有更深刻和全面的理解. 存在于锂离子电池电极材料和电解液之间的固态电解质中间相(solid electrolyte interphase,SEI)已被证明是一个影响电池性能的重要因素,目前学术界和产业界对其认识还不是很全面,尤其是高分辨、工况下以及多技术联合的界面表征工作较少见到报道. 原子力显微镜(atomic force microscopy,AFM)通过探测针尖与样品之间的相互作用力,能够在原子尺度上原位表征液态电池界面的形貌以及力学特性,对于电极界面的理解和调控非常重要. 本文作者通过总结近几年AFM在锂离子电池SEI研究的中的应用,并结合本课题组在该领域的工作,对AFM技术在锂离子电池SEI研究中的应用做了总结和展望,对加深锂离子电池界面的理解,以及构建稳定锂电池界面的相关研究有参考意义.

关键词: 原子力显微镜, 锂离子电池, 界面, 形貌, 力学模量

Abstract:

In recent years, the rapid growing in the electric vehicle market has raised higher requirement on the lithium-ion batteries (LIBs) performance towards energy density and safety. However, considering the successful development of LIBs techniques in the past 30 years, there is little room left for improving the LIBs performance on the aspects related to the electrode materials, battery structure design and production processes. It is important to pursue more comprehensive fundamental understanding in the entire system and working principle of LIBs. Solid electrolyte interphase (SEI), existing between the electrode material and the electrolyte, has been proved to be an important factor affecting the performance of LIBs. However, at present, researchers both in the academia and industry still do not have full understanding on the SEI. Limited reports on SEI research with high resolution, in operando, and multi-technology combined characterization are available. Atomic force microscopy (AFM), which works based on detecting the interaction force between the AFM probe tip and the measured sample, can in operando characterize the morphological and mechanical properties of SEI at a liquid state with atomic scale resolution. This is very important for the understanding and regulation of SEI in LIBs. In this work, we summarize the application of AFM in investigating the SEI in LIBs in recent years by mainly introducing the work done in our research group in this field. This review will contribute to the understanding and regulation of LIBs interface towards construction of a high-performance LIBs with stable SEI.

Key words: atomic force microscopy, lithium ion battery, interface, morphology, mechanical modulus

中图分类号: