欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

电化学(中英文) ›› 2019, Vol. 25 ›› Issue (4): 511-521.  doi: 10.13208/j.electrochem.180308

• 研究论文 • 上一篇    下一篇

Cu-bipy-BTC衍生碳基材料的制备及其氧还原电催化性能

张利华1,2,陈峻峰1,2,黄皖唐1,2,胡勇有1,2*,程建华1,2,陈元彩1,2   

  1. (1. 华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广东 广州 510006;2. 广东省环境纳米材料工程技术研究中心, 广东 广州 510006)
  • 收稿日期:2018-03-13 修回日期:2018-06-05 出版日期:2019-08-28 发布日期:2019-08-28
  • 基金资助:
    国家自然科学基金项目(No. 21477039)资助

Preparations and Electrocatalytic Properties of Cu-bipy-BTC-Derived Carbon-Based Catalyst for Oxygen Reduction Reaction

ZHANG Li-hua1,2, CHEN Jun-feng1,2, HUANG Wan-tang1,2, HU Yong-you1,2,* ,  CHENG Jian-hua1,2, CHEN Yuan-cai1,2   

  1. (1. The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China; 2. Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, P. R. China)
  • Received:2018-03-13 Revised:2018-06-05 Published:2019-08-28 Online:2019-08-28

摘要:

制备高效、廉价的氧还原(ORR)电催化剂是燃料电池的技术关键. 本文采用水热法制备出前驱体金属有机骨架化合物(MOF:Cu-bipy-BTC,bipy=2,2′-联吡啶,BTC=均苯三甲酸)后,再高温煅烧得到碳基材料MOF-800. 采用扫描电镜、X射线衍射、红外光谱、氮气吸附/脱附等温线和X射线光电子谱表征了材料的形貌和结构特征;采用线性扫描伏安曲线、i-t曲线等考察了材料的氧还原催化性能. 结果表明,与前驱体Cu-bipy-BTC相比,MOF-800含有大量的微孔(0.5 ~ 1.3 nm),为铜、氮掺杂多孔碳. MOF-800的电荷转移阻抗为10.6 Ω,比Cu-bipy-BTC降低了97.2%,具有优良的导电性. MOF-800具有优异的ORR催化性能,其起始电位约为-0.04 V(vs. Ag/AgCl),其电子转移数接近4. 铜、氮掺杂的多孔碳结构导电性好,高含量的吡啶氮、吡咯氮和石墨氮提供了大量催化活性位点(C-N, Cu-Nx),是MOF-800具有高氧还原电催化性能的主要原因. 本研究可为煅烧Cu-bipy-BTC制备碳基材料用于燃料电池修饰阴极提供技术支撑与理论依据.

 

关键词: 铜、氮掺杂多孔碳, 煅烧, 金属有机骨架化合物, 氧还原反应, 电催化

Abstract:

Efficient and low-cost oxygen reduction reaction (ORR) electrocatalyst plays a key role for fuel cells. In this paper, ORR active metal organic framework (MOF: Cu-bipy-BTC, bipy = 2,2?-bipyridine, BTC = 1,3,5-tricarboxylate) was prepared using hydrothermal method, and then carbon-based material MOF-800 was obtained from pyrolyzing Cu-bipy-BTC at 800 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption isotherm and X-ray photolectron spectroscopy (XPS) were used to characterize the morphologies and structures of the catalysts. Linear sweep voltammetry (LSV) and current-time curve (i-t) were adopted to evaluate the electrocatalytic properties of the catalysts. The results showed that the MOF-800 originated a certain amount of micropores (0.5 ~ 1.3 nm) compared with the MOF precursor. The MOF-800 had excellent electrical conductivity with a charge transfer resistance of 10.6 Ω, reduced by 97.2% compared to Cu-bipy-BTC. It also exhibited excellent ORR electrocatalytic performance with the onset potential of ca. −0.04 V (vs. Ag/AgCl) and the electron transfer number close to 4. As a Cu, N-incorporated carbon-based catalyst, MOF-800 had good electrical conductivity, and the large amounts of pyridinic, pyrrolic and graphitic nitrogen provided abundant active sites (C–N, Cu–Nx), which resulted in the improved ORR electrocatalytic activity. This study provided technical and theoretical validations for the improvements in electrical conductivity and ORR catalytic performance of Cu-bipy-BTC by pyrolyzing.

Key words: Cu, N-incorporated porous carbon, pyrolysis, metalorganic framework, oxygen reduction reaction, electrocatalysis

中图分类号: